TOSHIBA

TLCS-900 Compiler System
User’s Guide

1st Edition

TOSHIBA Corporation Semiconductor Company

(C)Copyright TOSHIBA CORPORATION 2009 All right reserved

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice. (W11AE-01)

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, the hardware
and/or software incorporated in the TOSHIBA products listed in this document (“TOSHIBA Products”) in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the
responsibility of the customer, when utilizing TOSHIBA Products, to fully comply with the standards of safety in
making safety design for the entire system, and to avoid the situations in which a malfunction or failure of such
TOSHIBA Products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA Products are used within specified operating ranges
as set forth in the specifications for this product, the specifications for the semiconductor devices under
evaluation, and any other related information. Also, please keep in mind the precautions and conditions set forth
in the “TOSHIBA Semiconductor Reliability Handbook” and “Instruction Manual” or “Operation Manual” that
accompany this product and any devices connected to this product.

Please always confirm the latest information of the TOSHIBA Products released on the web page of
microcomputer in the web site of TOSHIBA Semiconductor Company.

(http://www.semicon.toshiba.co.jp/eng/) (WO1AE-01)

- The TOSHIBA Products are intended for usage in the functional evaluation of semiconductor devices. TOSHIBA
Products shall not be used for purposes other than functional evaluation, such as for verification of device
reliability. The TOSHIBA Products shall not be incorporated this product into customer products. The TOSHIBA
Products shall not be converted, disassembled, modified, or used outside its specified operating range of the
TOSHIBA Products listed in this document.

- The TOSHIBA Products are intended for the functional evaluation of semiconductor devices that are designed
for use in general electronics applications (e.g., computer, personal equipment, office equipment, measuring
equipment, industrial robotics, and domestic appliances). These TOSHIBA Products are neither intended nor
warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or
failure of which may cause loss of human life or bodily injury (“Unintended Usage”).

Without limiting the generality of the foregoing, unintended Usage include atomic energy control instruments,
airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, and all types of safety devices. The TOSHIBA Products shall not be used for
Unintended Usage. (W02BE-01)

- The products described in this document shall not be used or embedded to any downstream products of which
manufacture, use and/or sale are prohibited under any applicable laws and regulations. (W03AE-01)

- TOSHIBA does not take any responsibility for incidental damage (including loss of business profit, business
interruption, loss of business information, and other pecuniary damage) arising out of the use or disability to use
the product. (WO4AE-01)

- The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
may result from its use. No license is granted by implication or otherwise under any patents or other rights of
TOSHIBA or the third parties. (WO6AE-02)

- Product names mentioned herein may be trademarks of their respective companies. (W07AE-02)

(SWE1-2E-2) ©2008 TOSHIBA CORPORATION, All rights reserved.

Preface

Preface

Thank you for using Toshiba microcomputer products.

This manual describes how to use the microcomputer development system product you
have purchased. Please keep this manual to hand when you use the product.

Toshiba will continue to make every effort to improve our products to better meet the
needs of our customers. We will highly appreciate your continued patronage of Toshiba
microcomputer products also in future.

- Microsoft®, Windows®, Windows® 2000, Windows® XP, and Windows Vista® are
either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

prefaceE-03

Preface

Technical support

The "readme.txt" file is included with the product package to help you use this product.
If you have any further questions regarding the content of this manual, please do not
hesitate to contact your local Toshiba sales representative.

Our technical support service is available if you encounter any phenomenon that seems
to be faulty while using this product. At your request we will investigate the cause of the
phenomenon and report back to you. To use this service, you need to provide us with the
data that enables us to reproduce the phenomenon, such as the operation procedure, etc.
Please note that we may not be able to deal with a phenomenon that cannot be reproduced.

INDEX

I INDEX I

Part 1 Compiler SYStem OVEIVIEWcouuuiiiiiiiieeiiieiii ettt 1
Chapter 1 Before Using the Compiler SYyStem ..ot 3
1.1 Explanation of EaCh Manualoooiiiiiiiiiiiii e 3

1.2 How to Read the ManUAaIS...........ccuuiiiiiiiiiiii e 3

Chapter 2 Outline of System DevelopmMENT o 4
2.1 Developing Microcomputer Application SYSIEMSccoviiiiiiiiiiiee e 4

Chapter 3 Compiler MeChaniSmM 5
3.1 COMPIET OVEIVIEW ..ottt e e e e e et e e e e e e e e e e bbb ee e s 5

Part 2 How to Use the Compiler SYStemM ... 7
Chapter 4 Mechanism for C Program Operation............c.ocvieviioi i ieieeaeaen 9
4.1 SEATUP FHle et 9

4.1.1 Preparation for Using Stackcoooiiiiiiiiiii 10

4.1.2 Memory Initialization ... 11

4.1.3 Hardware INitializationoooiiiiiiii e 12

4.1.4 Calling the Main Function and Processing after Endccccciiiiin. 12

4.2 SFRHEAAEI FIlE ..ottt 12

4.3 SFR, Vector Definition File ... 13

4.3.1 SFR DEFINITION. ...ttt ettt et e e e bb e e e e sabaeeaeas 14

4.3.2 Interrupt Function Definition ... 15

4.3.3 Program for INterrupt ProCeSSINGooeiiriiiiiiieai e 15

4.4 LinK CommaNd File ..o e e 15

4.41 Memory Definition Part ... 16

4.4.2 Section Definition Part...........cooiiiiiiiiiiiiiiiie e 17

4.4.3 Symbol Definition Part............ooooi 17

4.5 Standard Library Definition File ... 17

4.5.1 Preparation for Using Arithmetic Functions and Floating Point Numbers............. 19

4.5.2 Preparation for Using Abort FUNCLION............ooooiiiiiii 19

4.5.3 Preparation for Using EXit FUNCLION ..., 19

4.5.4 Preparation for Using Heap Ar€ascooeiii i 19

Chapter 5 Variable Type and FUNCLION TYPe. ... 21
5.1 Variable Ty e 21

5.2 FUNCHON Ty P8 i 21

Chapter 6 Structures and Bit Fields ..o 23
6.1 Memory Allocation of Structure Members ..o 23

6.2 Changing Alignment of Structure Members..........ooooi i 23

6.3 BIt FIeldS Ty P8 .o 24

6.4 Memory Allocation of Bit Fields..........oooooiiiii 24

6.5 Changing Memory Allocation of Bit FieldS ... 25

Chapter 7 INTErTUPT PrOCESSING. ... cei ettt ettt ettt e e e e e e anenens 26
7.1 Definition Interrupt FUNCHIONcoooiiiiiii 26

7.2 Definition INterrupt VECIONooooieeiieeee e 26

7.3 Enable Interrupt and Disable INterrupt..........oooooiiiiiii 26

731 __DI(), __EI() @Nd __EI900() .uueeeeiarreeeiaiieieeaaiiieeeasriee e aireeessnibeee s sinnee e 26

7.3.2 Hpragma diSiNTEITUPT. ...coo e 27

Chapter 8 How to use Assembly Language in C Programcooooiiiiiiioiiiiienaannn. 28
8.1 INlNE ASSEMDBIY ... 28

8.1.1 Inline Assembly FOrmMatcoooiiiiiiiii 28

8.1.2 Caution When Using Inline Assembly ... 28

8.2 Register Pseudo Variables. ... 29

INDEX

8.3 Variable Name and FUNCtION NAME........ccoiiiiiiiiiiiiiiiee et 29

Chapter 9 HOW L0 USE PIC/PID ... e eeaas 30
0.1 PIC/PID OULIINE ...ttt ettt sttt ettt et e e snae e nane e 30

0.2 PIC/PID FOIMAL ..ottt ettt ettt ettt et e et e e st e e e sab e e et e e saneeananeeas 30

0.3 HOW O USE PIC/PID ...ttt ettt nee e 30

Part 3 Checking and Improving Programs ... 33
Chapter 10 ChecKing Programsc.uees ettt et e et e e e e eeanens 35
10.1 Confirming Method of Compiling, Assembling, and Linking Results.............cccccccvvunnee 35

10.1.1 Confirming Compiling RESUI...........uuuimir s 35

10.1.2 Confirming AssembliNg RESUILuuueiei s 35

10.1.3 Confirming Linking RESUIL.........uuumeii s 35

Chapter 11 Efficient Program Writing Methodsccoiiiiiiiiii e 36
Part 4 CaUtiON HTEIMS ... e et e e e e e e eeerbaan s 39
Chapter 12 MCU SPECITICATION. ..ottt e e aeas 41
121 SEIECE CPU Ty ittt ettt ettt e e e e e et e e e e e e e bbb e e e e e e e e e nnnnees 41

Chapter 13 Compiler SPeCifiCatIONuu e 42
13.1 SOUICE FIlES RUIES ... e e e e e e e e aa e e e e e e e e e enaeas 42

13.2 Caution abDOUL COMPIIETciiiiiiiie e 42

13.3 Relation between Debugging Function of IDE and Compiler Optimization 42

13.4 Caution aboUt ASSEMDIET e 42

13.5 Caution @DOUL LIDIaryeeeiiioiiiiiiee e 42

Chapter 14 Error Meanings and Handling Methods...........coooiiiiiiiii s 44
14.1 Link Errors and HOw t0 Handle Them...... ... 44

T AT AN o1 0 Y= o PP a7
Chapter 15 Using by Command LiNe ... 49
15.1 Setting Environmental Variables.......... ... 49

15.2 Command and EXplanation TRereof........ ... 49

Chapter 16 Transition to Macro PreproCeSSOr ...t 51
16.1 Case Of USING PrEPIOCESSOLuuuuuueiui e a e a e aas 51

0 S R O] 1110 11T o ST TP PPPPPTRPPTR 51

16.2 Case Of USING MACTOPIOCESSOLuuuuuuuuunnei s s e e s e aaas 51

T R 1 ol [0 To (T TR SRR 51

16.2.2 2, WL, 2FBPEAL ... 51

16.2.3 Escape Function, Blacket FUNCHIONuuuuiiii 52

16.2.4 ?eject, ?genonly, ?gen, ?in, ?list, ?maclib, ?nolist, 2out, 2title.............cccccumiiiininnnnnns 52

168.2.5 2AETING ..t nree e 52

1B.2.8 2SBT .ueeteitie ettt ettt et e b et e e e h et e eRbe e e eRee e e bt e e enbe e e eneeeaneeeanaee e 53

16.2.7 26QS, 7NES, 2ILS, 21€S, 2GLS, 2PES ..evurunnnrniinnni e 53

L6.2.8 2SUDSEE ... e e e aas 54

Chapter 17 Specification Change of PIC/PID FUNCHiONcoeiiiiiiiiiiiiieieieeenne 55
17.1 Specification Change OFf PIC e 55

17.1.1 Method for Specifying PIC FUNCLIONuuuuiii s 55

17.1.2 Section Name which AHOCAtes PICuueni 55

17.2 Specification Change Of PID.......... s 56

17.2.1 Method for Specifying PID Variable 56

17.2.2 Section Name which AHOCAteS PIDuuuiiii e 56

Part 1 Compiler System Overview

Chapter 1 Before Using the Compiler System

IChapter 1 Before Using the Compiler System

1.1 Explanation of Each Manual

Three manuals come with this product. We will give an overview of these three manuals.

Compiler System User's Guide

This manual includes specific methods of use of items such as the compiler, assembler, and linker
when doing actual application development. It consists of things such as how to allocate variables and
functions, how to view information output by an assembler or linker, customization of a source program,
how to deal with errors, etc. You can know the specifications in even more detail from this manual by
referring to the other two manuals.

C Compiler Reference
This manual includes specifications relating to C language, compiler option contents, and the like.

Assembler Reference

This manual includes specifications relating to assembly language, the linker and link command files,
the macropreprocessor, the librarian, and the object converter. They are collectively indicated for every
tool.

For TOSHIBA Integrated Development Environment, please refer to IDE help.

1.2 How to Read the Manuals

Here, we will explain the format description rules.

Format Description Rules

[Format Description Example]

#pragma section <Section Type> [<Section Name>]
[<Displacement>]|<Start Address>]

#pragma section For commands and options, etc., parts that do not have the enclosure symbols or
delimiting symbols described hereafter are noted as is in the actual program.

<Section Type> Specifiers enclosed in < > describe character strings or numerical values specified
within < > in the actual program.

[<Section Name>]Specifiers enclosed in [] can be omitted in the actual program.

[<Displacement> | <Start Address>]
For specifiers delimited by " | ", specify one of those items in the actual program.

Part 1 Compiler System Overview

IChapter 2 Outline of System Development

2.1 Developing Microcomputer Application Systems

With system development using microcomputers, the developing software that controls the subject
microcomputer occupies an important position. Development tools such as a compiler, assembler, and
debugger support this software development. Figure 2-1 below shows development tools suited for
development processes.

e Hardware N Software ™
development development
Hardware design Software design (Development tools)
Y Coding
Circuit design ¢
Compiling/ /I—J C compiler/
v assembling ~] Assembler
Hardware v _I
manufacturing J
Linking/locating l</l— .
l ¢ — | Linker
Hardware Software |
debugging debugging 1 Eri]buulggg:
- AN |
\ 4 \ 4 |
. Debugger
System debugging K | Emulg?or
L y

Figure 2-1 Development Tools for Handling System Development Processes

With TLCS-900 Family C Compiler, in the software development part shown in the figure above, the
program after coding is compiled, assembled, and linked, and processing is done until an object is
generated. The generated object is in either a format that the debugger can use or in a format that can be
written to ROM.

Chapter 3 Compiler Mechanism

I Chapter 3 Compiler Mechanism

3.1 Compiler Overview

The compiler process flow is as follows.

Source program with

C source program macro language

() (.mac)
v v
C Compiler Macro Preprocessor
tumpp
Y v
Assembly source Assembly source
program program
(-asm) (.asm)
v v
Assembler
asm900
A 4 A 4 A 4
Relocatable object Assembler list (.Ist)
(.rel)
Librarian
tulib
Library Link ((:cl)gl)mand
(.lib) '
A4
Linker
tulink
v v
-
Absolute object Map
(-abs) (.map)
-
Object Converter
tuconv
|
v v
Intel HEX Format Motorola S Format
object object
(-hXX) (.5XX)

Figure 3-1 Compiler Process Flow

Part 1 Compiler System Overview

C Compiler

The C compiler handles files that have the suffix .c as input files. The C compiler is a tool that converts
a C language source file to an assembly source file that uses TLCS-900 Family instruction set.

Assembler

The assembler handles files with the suffix .asm as input files. The assembler creates relocatable object
files from assembly source files.

Linker

The linker handles files with the suffix .rel/.Icf/.lib as input files.

The linker links multiple relocatable object files according to the specifications of the link command
file, and is a tool that creates one executable absolute object file. A link command file is a file that
defines the allocation on memory and the link sequence of elements such as code and data in a program.

Macro Preprocessor

The macro preprocessor handles files with the suffix .mac as input files. It processes macro
preprocessor source files that contain macros preprocessor language. As a result, an assembly source file
that does not contain macros or conditional assemblies is created.

Librarian

The librarian handles files with the suffix .rel as input files. The librarian is a tool for consolidating
multiple relocatable object files into one library file.

Object Converter

The object converter handles files with the suffix .abs as input files. The object converter is a tool that
converts absolute object files to object file that is usable by EPROM writer or the like. The object
converter can output Intel HEX and Motorola S Format as object file.

Part 2 How to Use the Compiler System

Chapter 4 Mechanism for C Program Operation

Chapter 4 Mechanism for C Program Operation

In this section, we will explain operation immediately after reset the CPU using the example of the
following files.

startup file

SFR header file

definision file for SFR and vector
link command file

definision files for standard library

If TLCS-900 Family C compiler is installed, the sample of these files can be referred to. We do NOT
guarantee these sample files. When you use this sample, please confirm the operation.

Explanation of each file is using the sample file of TLCS-900/L1 Series.

4.1 Startup File

A startup file is a file that contains the startup routine.

When CPU is reset, the program is executed from the address written to reset vector. At this time, the
program executed first is called startup routine and the preparations for performing main function are
made. It is neccesary to describe according as the specification of using CPU. Generally items required
for startup file are as follows.

Preparation for using stack

Memory initialization

Hardware initialization

Calling the main function and processing after end
Program for interrupt processing

Preparation for using standard libraries

<stc91ml.asm>

e Sample Start up Program for TLCS-900/L1 Series
el MCU : TMP91FW64FG
-k
*

$MAXITMUM
module stc91iml_asm

; [External symbol declaration]

extern medium _WDMOD

extern medium _WDCR

extern large __FAreaOrg
extern medium __ FAreaSize
extern large __FDataAddr
extern large __FDbataOrg
extern medium _ FDataSize
extern large _main
extern medium __BaseXSP

[Dummy section]

Part 2 How to Use the Compiler System

; This part is for initialize of f_area and f_data section.
Do not rewrite this part.

%_area section data large align=2,2
f_data section data large align=2,2

; [Start Up Routine]

;==[Caution !!]
; Don"t use following instructions before setting XSP.
; (CALL condition, dst), (CALR dst)

; (LINK dst, num) , (POP dst)
; (POP SR) , (PUSH SR)
; (PUSH src) , (RET condition)
; (RETD num) , (RETI)
; C swi num) , (UNLK dst)
f_code section code large
public __startup
__startup:
;-——[Disable interrupt J--—-——-———— -
di
;-——|[Disable Watchdog Timer(WDT) J---—-————=——————————— o ——
1db (_wDMOD) ,0x00 ; [for RTE] WDT disable
Idb (_WDCR),0xb1 ;
;-——|[Setting Stack Pointer]--—————-——— -
Id XSP, __BaseXSP ; For Setting XSP
;-——[RAM clear for f_area section J--————————————————— - ——
id xde, _FAreaOrg
id bc, _FAreaSize
or bc,bc
J z ,FAR_AREA_2
FAR_AREA_1:
1db (xde+),0
sub bc,1
J nz,FAR_AREA_1
FAR_AREA_2:
;-—L Initialize of f_data section : Using as the need arises.]--
id xde, _FDataAddr
id xhl,__FDataOrg
id bc,_ _FDataSize
or bc,bc

i z,FAR_DATA 1
Idirb (xde+), (xhl+)

FAR_DATA 1:
;==-L[Jump to main program J-----—---=--——-——-———m oo
?I _main
end

4.1.1 Preparation for Using Stack

Before interruption and function call occur, it is necessary to set the value to the stack pointer (XSP).
When not having set, unexpected operation of MCU may occur. Generally the final address of RAM is
set to stack pointer. The stack area is extended in the direction of low address (numerical value is
smaller). " BaseXSP" of the following example is set up by link command file mentioned later.

<Exerpt from str91ml.asm>

; [Start Up Routine]

10

Chapter 4 Mechanism for C Program Operation

;==[Caution I]
Don*"t use following instructions before setting XSP.
; (CALL condition, dst), (CALR dst)

; (LINK dst, num) , (POP dst)
; (POP SR) , (PUSH SR)
; (PUSH src) , (RET condition)
; (RETD num) , (RETI)
; C swi num) , (UNLK dst)
f_code section code large
public __startup
__startup:

;-——[Setting Stack Pointer }]---------————
id XSP, __BaseXSP ; For Setting XSP

4.1.2 Memory Initialization
When power is turned on for the hardware or the like, the value of the object allocated in the RAM
area is undefined. This is why global variable initialization is required. There are two types of global
variables initialization, one is the initialization of global variables without initial value, and the other is
the initialization of global variables with initial value.

Initialization of global variables without initial value (area section)

The variable areas without initial value are initialized by setting the RAM area to 0.

With C language specifications, the variable area without initial value must have initial settings of "0",
so in the startup rutin, initialization processing is done before the main function is called. __ FAreaOrg is
the top address of RAM area, __ FAreaSize is the size of RAM area. These variables are setup by link
command file mentioned later.

<Exerpt from str91ml.asm>
;-——[RAM clear for f_area section }J----—————---------—————————

id xde,__FAreaOrg

id bc, FAreaSize

or bc,bc

J z,FAR_AREA_2
FAR_AREA_1:

1db (xde+),0

sub bc,1

nz,FAR_AREA 1

J
FAR_AREA 2:

Initialization of global variables with initial values (data section)

The variable areas with initial values (t_data, n_data, f_data) are initialized by transferring the initial
values from the ROM area to the RAM area.

The variable areas with initial values must be set the initial values, it specifies by link command file so
that initial values is allocated in the ROM area, and variable is allocated in the RAM area. Then, the
initial values are set by transferring the initial values that are allocated in the ROM area to the variables
that allocated in the RAM area before calling the main function.

The variable areas with initial values are areas defined by section type "data", and normally the section
name are declared using t_data, n_data and f_data. Here, we will give an example of f_data initialization.

11

Part 2 How to Use the Compiler System

__FDataOryg is the start address of transfer source, __ FDataAddr is the start address of transfer
destination, and __ FDataSize is the numbler of transmission bytes, these variables are setup by link
command file mentioned later.

<Exerpt from str91ml.asm>

;——[Initialize of f_data section : Using as the need arises.]--

id xde, _FDataAddr
id xhl,__FDataOrg
id bc, FDataSize
or bc,bc

J z,FAR_DATA 1
Idirb (xde+), (xhl+)
FAR_DATA_1:

4.1.3 Hardware Initialization

Hardware initialization is done by setting a suitable value in the Special Function Register (SFR).
Specific examples for TLCS-900 Family include watchdog timer settings, system clock settings, and 1/O
port settings, etc. The required register types and settings differ depending on the application that is
created. For the detail of the Special Function Register, see the "data sheet" of each microcomputer.

4.1.4 Calling the Main Function and Processing after End

The main function is called. Here, we will give an example of calling main function after interrupt
enabled.

<Exerpt from str91ml.asm>

[External symbol declaration]

extern medium _WDMOD
extern medium _WDCR

extern large __FAreaOrg
extern medium __FAreaSize
extern large __FDataAddr
extern large __FDataOrg
extern medium __ FDataSize
extern large _main
extern medium __BaseXSP

;-——[Jump to main program J-----————————————— - ————
ei
J _main

4.2 SFR Header File

In SFR header file, each SFR (special function register) define as 1/0 variables.
This example has described that it can use also for SFR external declaration. When this file is included
after "#define I0_MEM 0" in a source file using SFR, it can be used as external declaration.

< i0900I1.h>

/***

3* Sample SFR Header File for TLCS-900/L1 Series *
MCU : TMP91FW64FG *

12

Chapter 4 Mechanism for C Program Operation

#ifdef 10_MEM

#define EXTERN
#else

#endi

#define EXTERN extern

/* This definition is for 1/0 variable and extern definition */
/* So please do not use the name "I10_MEM'.*/

/

/***[OX00] *****
EXTERN unsigned
EXTERN unsigned
unsigned
(0x03)
unsigned
unsigned
unsigned
(0x07)
unsigned

EXTERN
EXTERN

EXTERN

char

Reserved

char
char
char

Reserved

char

10(0x00)
io(0x01)
10(0x02)

Y
i0(0x04)
i10(0x05)
10(0x06)

Y
10(0x08)

PO; /*
P1; /*
POCR; /*
P1CR; /*
P1FC; /*
P2; /*
P2CR; /*

0x00: PortO
0x01: Portl
0x02: PortO
0x04: Portl
0x05: Portl
0x06: Port2
0x08: Port2

/

*/

*/

control */
control */
function */
*/

control */

4.3

SFR, Vector Definition File

Generally items required for SFR and vector definition file are as follows.

® SFR definition

® Interrupt function definition
® Program for interrupt processing

< i0900I1.c>

-k
Ll
-k
L
-k
’
-k

MCU : TMP91FW64FG

/***

Sample SFR/Vector File for TLCS-900/L1 Series

#define 10_MEM

#include "io90011.h"

void _startup(void);

/* This definition is for 1/0 variable and extern definition */
/* So please do not use the name "I10_MEM'._.*/

/*

[Dummy function for interrupt]

{
}

void __interrupt _Int_dummy(void)

/*

[Define interrupt table]
This part must be rewrite.

_startup

Int_dummy
Int_dummy
Int_dummy
Int_dummy
Int_dummy
Int_dummy
Int_dummy

/*
/*
/*
/*
/*
/*
/*
/*

#pragma section const INT_VECTOR
void * const _IntTbI[] = {

OxFFFF0O0:
OxFFFf04:
OxFFFf08:
OxFFFfOc:
OxFFFF10:
OxFFffl4:
OxFFfFf18:
OxfFffflc:

reset / SWIi
swiir */
INTUNDEF /
SWI3 */
SwWi4 */

*/

*/

*/

*/

0 */
swi2 */

*/

Nk ok % %

13

Part 2 How to Use the Compiler System

43.1

,__Int_dummy /* OxFFFF20: NMI */
,__Int_dummy /* OxFFFf24: INTWD */
,_Int_dummy /* OxFFFF28: INTO */
,__Int_dummy /* OxFFff2c: INT1 */
,__Int_dummy /* OxFFFF30: INT2 */
,__Int_dummy /* OxFFFF34: INT3 */
,_Int_dummy /* OxFFFF38: INT4 */
,__Int_dummy /* OxFFFf3c: INTS5 */
,__Int_dummy /* OxFFFF40: INT6 */
,__Int_dummy /* OxFFff44: INT7 */
,_Int_dummy /* OxFFFF48: INT8 */
,__Int_dummy /* OxFfff4c: INT9 */
,__Int_dummy /* OxFFFF50: INT10 */
,__Int_dummy /* OxFFFf54: INTTAO */
,_Int_dummy /* OxFFFF58: INTTAl1 */
,__Int_dummy /* OxFFFf5c: INTTA2 */
,__Int_dummy /* OxXFFFF60: INTTA3 */
,__Int_dummy /* OxFFff64: INTTA4 */
,_Int_dummy /* OxFFFF68: INTTAS */
,__Int_dummy /* Oxfffféc: INTTBOO */
,__Int_dummy /* OxFFFF70: INTTBO1l */
,_ Int_dummy /* OxFFFF74: INTTB1O */
,_Int_dummy /* OxFFFF78: INTTB11 */
,__Int_dummy /* OxFFff7c: INTTB20 */
,__Int_dummy /* OxFFFF80: INTTB21 */
,__Int_dummy /* OxFFff84: INTTB30 */
,_Int_dummy /* OxFFFF88: INTTB31 */
,__Int_dummy /* OxFFff8c: INTTB40 */
,__Int_dummy /* OxFFFFO0: INTTB41 */
,__Int_dummy /* OxFFFF94: INTTBOFO */
,_Int_dummy /* OxFFFF98: INTTBOF1 */
,__Int_dummy /* OxFFFf9c: INTTBOF2 */
,__Int_dummy /* OxFfffa0: INTTBOF3 */
,__Int_dummy /* Oxffffad4: INTTBOF3 */
,_Int_dummy /* Oxffffa8: INTRXO */
,__Int_dummy /* Oxffffac: INTTXO */
,__Int_dummy /* OxFFFfbO: INTRX1 */
,__Int_dummy /* OxFFffb4: INTTX1 */
,_Int_dummy /* OxFFFfb8: INTRX2 */
,__Int_dummy /* OxFfffbc: INTTX2 */
,__Int_dummy /* OxFffFfcO: INTSBIO */
,__Int_dummy /* Oxffffc4: INTSBI1 */
,_Int_dummy /* OxFFffc8: INTRTC */
,__Int_dummy /* Oxffffcc: INTAD */
,__Int_dummy /* OxFFFFdO: INTTCO */
,__Int_dummy /* OxFFffd4: INTTC1L */
,_Int_dummy /* OxFFFFd8: INTTC2 */
,__Int_dummy /* Oxffffdc: INTTC3 */
#pragma section const /* return to default */
/*-eof-*/

SFR Definition

Each SFR is defined as 1/0 variables. The following example is defining SFR using SFR header file
with "#define I0_MEM 1"

<Exerpt from i0900I1.c>

#define 10_MEM 1
/* This definition is for 1/0 variable and extern definition */
/* So please do not use the name "I10_MEM".*/

#include "io090011.h"

14

Chapter 4 Mechanism for C Program Operation

4.3.2 Interrupt Function Definition

The interrupt functions are defined. The following example is dummy routine which carries out only a
return without processing anything.

<Exerpt from i0900I1.c>

/*
[Dummy function for interrupt]
*
/
void __interrupt _Int_dummy(void)
{
bs

4.3.3 Program for Interrupt Processing

The table which stores interrupt/reset vector is created. The array of function pointer which qualified
const define interrupt vector. Reset vector is a start address when MCU has reset, and interrupt vector is a
start address of interrupt processing rutine. These vector are set to the vector table by function name.
Please assign the dummy routine which carries out only a return without processing anything to the
interrupts which is not used. The following example, interrupt vector is defined as the section name
"INT_VECTOR".

<Exerpt from i0900I1.c>

/*
[Define interrupt table]
This part must be rewrite.
*/

#pragma section const INT_VECTOR

void * const _IntTbI[] = {
_startup /* OxXFFFFO0: reset /7 SWIO */
,__Int_dummy /* OxFFFF04: Swi1 */
,_Int_dummy /* OxFFFF08: INTUNDEF / SWI2 */
,__Int_dummy /* OxFFFfOc: Swi3 */
,_Int_dummy /* OxFFFF10: Swi4 */
,__Int_dummy /* OxFFff14: SWI5 */
,_Int_dummy /* OxFFFfc8: INTRTC */
,__Int_dummy /* Oxffffcc: INTAD */
,_Int_dummy /* OxFFFFdO: INTTCO */
,__Int_dummy /* OxFFffd4: INTTCL */
,_Int_dummy /* OxFFFFd8: INTTC2 */
,__Int_dummy /* Oxffffdc: INTTC3 */

#pragma section const /* return to default */

4.4 Link Command File

A link command file is a file which describes the definition of memory space to use, and the memory
allocation of the programs and variables, and the definisiton of gloval symbol. Generally items required
for link command file are as follows.

® Memory definition part
® Section definition part
® External definition symbol part

: Memory space is defined.
- Memory allocation of the programs and variables is defined
: External definition symbol is defined.

15

Part 2 How to Use the Compiler System

<c9l.lcf>
/ xxxxxxxxxxxxxxxxxxxxx
e Sample Link Command File for TLCS-900/L1 Series *
;* MCU : TMP91FW64FG
*
A e e e e *
* (C)Copyright TOSHIBA CORPORATION 2009 All rights reserved *
aiaiaiaiaisiaiaiaiaiaiaiaiaialaiaie /
memory
10 = org=0x000000, 1en=0x001000
RAM : org=0x001000, Ien=0x002000
EMEM : org=0x003000, len=0xfdd000
code.l - org=0xfe0000, len=0x01ff00
INTTBL > org=Oxffff00, 1en=0x0000f0
RESV2 : org=OxffFff0, 1en=0x000010
}
sections
{
far_code org=0xfe0000 : {*(f_code)}
far_const org=org(far_code)+sizeof(far_code) : {*(f_const)}
far_area org=0x001000 : {*(f_area)}
far_data org=org(far_const)+sizeof(far_const)
addr=org(far_area)+sizeof(far_area) : {*(f_data)}
int_table org=0xFfFFfo0 : {*(INT_VECTOR)}
}
__BaseXSP = Ox002ffT;
__FAreaOrg = org(far_area);
__FAreaSize = sizeof(far_area);
__FDataAddr = addr(far_data);
__FDbataOrg = org(far_data);
__FDataSize = sizeof(far_data);
/*-eof-*/

[Caution] Ifalink is performed without specifying a link command file, it will be allocated
sequentially from the address 0 irrespective of a section attribute. Because of this, usually,
a link is performed with specifying a link command file.

4.4.1 Memory Definition Part

Memory definition part is described memory composition of the target MCU. For example, "1O :
0rg=0x000000, len=0x001000" becomes the meaning that the memory area "10" is between 0x000000
and 0x000fff (the size is 0x001000).

<Exerpt from c91.Icf>

memory

{
10 : org=0x000000, Ien=0x001000
RAM : org=0x001000, Ien=0x002000
EMEM - 0org=0x003000, len=0x¥fdd000
code.l = org=0xfe0000, len=0x01ff00
INTTBL : org=0OxffFf00, 1en=0x0000f0
RESV2 > org=Oxfffff0, 1en=0x000010

b

code.l is called Pre-defined memory, and this have meaning of the following.

16

Chapter 4 Mechanism for C Program Operation

Pre-defined memory Displacement Section type
data.l far
data.m near area / data
data.s tiny
code.| far code / const
code.m near

4.4.2 Section Definition Part

The section definition part specifies combining the input section, and collecting into an output section,
and arranging to memory. The addressing of section is united specification of the memory definition part.

<Exerpt from c91.Icf>

sections

{
far_code org=0xfe0000 : {*(f_code)}
far_const org=org(far_code)+sizeof(far_code) : {*(f_const)}
far_area org=0x001000 : {*(f_area)}
far_data org=org(far_const)+sizeof(far_const)

addr=org(far_area)+sizeof(far_area) : {*(f_data)}

int_table org=0xffffo0 : {*(INT_VECTOR)}

by

Below, f_area section (far variable without initial value) was summarized to far_area, and it allocates
to 0x001000.

| far_area org=0x001000 : {*(f _area)} |

Below, f_data section (far variables with initial value) was summarized to far_data, and the initial
value to transmit is allocated to immidiatry after far_const, the using variable is allocated to immidiatry
far_area. When allocating the variables with initial value, the allocating address of the initial value to
transmit to org= and the allocating address for the using variables to addr= are specified.

far_data org=org(far_const)+sizeof(far_const)
addr=org(far_area)+sizeof(far_area) : {*(f_data)}

4.4.3 Symbol Definition Part

A link command file can define external definition symbol. The identifier that are referenced at
ROM/RAM transfer in a startup file define in this part.

<Exerpt from c91.Icf>

___BaseXSP = Ox002fff;
__FAreaOrg = org(far_area);
__FAreaSize = sizeof(far_area);
__FDataAddr = addr(far_data);
__FDbataOrg = org(far_data);
__FDataSize = sizeof(far_data);

4.5 Standard Library Definition File

When using standard library files, a required setup is included in the standard library definition file. Do
the appropriate preparations for using standard library files.

17

Part 2 How to Use the Compiler System

® Using arithmetic functions and floating point numbers

® Using Heap Areas

<ini91ml.c>
/ * kK
e Sample Initial Program for TLCS-900/L1 Series *
;* MCU : TMP91FW64FG *
A e *
;* (C)Copyright TOSHIBA CORPORATION 2009 All rights reserved *
aiaiaiaiaisiaiaiaiaiaiaiaioialaiaie /
#include <stdlib.h>
#include <errno.h>
/* */
/* [Configuration part] */
/* Following macro value means that: */
/* 0 : The function is not used. */
/* 1 : The function is used. */
/* When you use "abort®™ or "exit®" or “heap area-, */
/* Rewrite each program to fit your use. */
/* */
#define __USE_FLOAT O /* Change 0 to 1, if use floating point.*/
#define __ USE _ABORT O /* Change 0 to 1, if use abort function.*/
#define __ USE EXIT O /* Change 0 to 1, if use exit function. */
#define __USE_HEAP O /* Change O to 1, if use heap area. */
#if __USE_FLOAT
/* */
/* [Define public variable] */
/* When use floating point, this part is necessary. */
/* Do not change this part. */
/* “errno” is reserved word. Do not access to this variable. */
/* */

volatile int errno;

#endif /* __USE_FLOAT */

#if __ USE_ABORT

/*
Via
/*
/*
/*
Vo

{

/>
/>
/>
/*
/>
VO

{

/* Refer from standard library */

*/
[Standard library function: abort()] */
When use abort function, this part is necessary. */
Rewrite this part to fit your program. */
*/
id abort(void)
/* */
/* Write the process before reset, then jump to your start up */
/* routine. */
/* */
/* __asm("] __startup™); SAMPLE */
/* */
o
#endif /* __USE_ABORT */
#if __USE_EXIT
*/
[Standard library function: exit()] */
When use exit function, this part is necessary. */
Rewrite this part to fit your program. */
*/
id exit(int status)
/* */
/* Write the process as same as normal program ending. */
/* */
/* __asm(" halt'); SAMPLE ~ */
/* */

18

Chapter 4 Mechanism for C Program Operation

45.1

45.2

45.3

45.4

#endif /> __USE_EXIT */

#if __ USE_HEAP

/* */
/* [Define Heap area] */
/* When use malloc, calloc or realloc, this part is necessary. */
/* Rewrite the address and size of Heap area to fit your program.*/

/* */
#define HeapTop (void*)0x2000 /* Heap area top address */
#define HeapSize 0x800 /* Heap area size */

unsigned long SBRK_break = HeapTop; /* Set Heap area top address */
unsigned long SBRK_size = HeapSize; /* Set Heap area size */

void* _allocb=((void *)0); /* Memory management pointer */
#endif /* __USE_HEAP */

/*-eof-*/

Preparation for Using Arithmetic Functions and Floating Point Numbers

When using arithmetic functions and floatitng point numbers, change " USE_FLOAT" into 1 and
perform symbol "errno" definition.

| #define __USE_FLOAT O /* Change 0 to 1, if use floating point.*/ |

Preparation for Using Abort Function

When using abort function, change variable " USE_ABORT" into 1, and please rewrite the abort
function according to your program.

| #define __USE_ABORT O /* Change O to 1, if use abort function. */ |

Preparation for Using Exit Function

When using exit function, change variable *__USE_EXIT" into 1, and please rewrite the exit function
according to your program.

| #define __USE_EXIT O /* Change O to 1, if use exit function. */ |

Preparation for Using Heap Areas

When using items such as malloc function, calloc function, or realloc function, change variable
"__USE_HEAP" into 1.

| #define __USE HEAP 0 /* Change O to 1, if use heap area. */ |

(1) Define aheap areain memory
Using the memory definition part in the link command file, an addition needs to define the
memory as a heap area.

(2) Define the start address and size of the heap area
Define the start address and size of the heap area. In the example, define symbols "HeapStart"
and "HeapSize".

19

Part 2 How to Use the Compiler System

3)

Initialize the parameter to use the heap area
To use a heap area, variables need to be prepared for an address for accessing the heap area and
for the area size. The variables that are prepared are as follows.

SBRK_break : Heap area start pointer
SBRK_size : Heap area size
_allocb : Heap area control pointer

For initialization of the heap area start pointer, set the start address of the memory space defined
as the heap area. The heap area control pointer is initial set using 0.

<Exerpt from ini91ml.c>

#if __USE_HEAP

/* */
/* [Define Heap area] */
/* When use malloc, calloc or realloc, this part is necessary. */
/* Rewrite the address and size of Heap area to fit your program.*/
/* */
#define HeapTop (void*)0x2000 /* Heap area top address */
#define HeapSize 0x800 /* Heap area size */

unsigned long SBRK_break = HeapTop; /* Set Heap area top address */
unsigned long SBRK_size = HeapSize; /* Set Heap area size */

void* _allocb=((void *)0); /* Memory management pointer */

#endif /* __USE_HEAP */

20

Chapter 5 Variable Type and Function Type

Chapter 5 Variable Type and Function Type

5.1

5.2

Variable Type

far variables

near variables

tiny variables

io variables

Function Type

These variables can be allocated to memory area for which displacement is "far".
When __far qualifier is specified or the memory qualifier is omitted, it can become
far variable, and it can allocate to the area from 0x0 to Oxffffff.

These variables can be allocated to memory area for which displacement is "near".
When __near qualifier is specified, it can become near variable, and it can allocate
to the area from Ox0 to Oxffff. When accessing a near variable, it may use the
command which the object size becomes small. Therefore, it is possible to make
object size small by carrying out the variable of high access freauency to near
variable.

These variables can be allocated to memory area for which displacement is "tiny".
When __tiny qualifier is specified, it can become tiny variable, and it can allocate to
the area from 0x0 to Oxff. When accessing a tiny variable, it may use the command
which the object size becomes small. Therefore, it is possible to make object size
small by carrying out the variable of high access freauency to tiny variable.

These are variables using definition SFR. io variables are out of optimization.

___interrupt function qualifier

__interrupt” specifies maskable interrupt function. In interrupt functions, using
registers are saved at function entry, and restored at exit, so that register value may
be protected. Compiler outputs "reti" to return from interrupt function.

__regbank function qualifier

" regbank" specifies maskable interrupt function. The difference from
" _interrupt" function specification is being able to use register bank, and the
register which are saved and restored are XIX, XIY and XIZ.

__inline function qualifier

When the inline function called, the inline function is unrolled directly to that
location.

__cdecl function qualifier

The"__cdecl" function is a function type. In this function, arguments are
recognized from right side, and all arguments are passed by stack. The default
function type is"__cdecl" function. Compiler outputs "ret" to return from

" cdecl" function.

__adecl function qualifier

The"__adecl" function is a function type. In this function, arguments are
recognized from left side, 1st, 2nd and 3rd arguments are passed by register XWA,

21

Part 2 How to Use the Compiler System

XBC and XDE. It passes by stack after the 4th argument. A return value is stored

and returned to XHL register. Also larger type than 4 bytes cannot be used for a

return value. Compiler outputs "ret" to return from"__adecl" function, but if

arguments are stored to stack, compiler outputs "retd" and stack is released.
__pic qualifier

" pic" specifies PIC function.

22

Chapter 6 Structures and Bit Fields

IChapter 6 Structures and Bit Fields

6.1 Memory Allocation of Structure Members

The structure members are allocated in memory in the sequence as they are described in the source file.
At this time, required padding is inserted according to alignment of data type, and alignment adjustments
are made.

Table 6-1 Structure member type and alignment

Member Type Alignment (byte)
char / signed char / unsigned char 1
short / signed short / unsigned short 2
int / signed int / unsigned int 2
long / signed long / unsigned long 2
float / double / long double 2
pointer 2
Determined by the
array alignment of element
type
Determined by the
structure / union alignment of the
maximum size member

6.2 Changing Alignment of Structure Members

When changing alignment of structure members, there are 2 kinds of methods, add -Xp option and
specify #pragma pack directive.

When changing alignment by file unit, compile with -Xp<alignment byte> option. The other methods
by block unit, specify #pragma pack(<alignment byte>) directive in a file. 1 or 2 can be specified as
<alignment byte>. When compile with -Xp2 option or specify #pragma pack(2) in a file, it becomes the
same meaning as default alignment 2 byte.

[Examplel] default memory allocation

struct pack _sample {
unsigned char meml;
unsigned int mem2;
unsigned short mem3;
};
0
" mem1
<- padding
+2
I memz2 ____
+4
I mem3 ____

23

Part 2 How to Use the Compiler System

[Example2] memory allocation specified #pragma pack(1)

¥

#pragma pack(l)

struct pack sample {
unsigned char
unsigned int
unsigned short

#pragma pack(Q)

meml;
memz2;
mem3;

+0
+1

+3

mem1l

6.3 Bit Fields Type

The following types can be used as a bit fields type. When it declares without specifying signed and
unsigned, it is recognized as signed. And if the signed type specifies, the highest-order bit is recognized

as sign bit.

Table 6-2 Bit fields type

Type Bit count
char / signed char / unsigned char 8
short / signed short / unsigned short 16
int / signed int / unsigned int 16
long / signed long / unsigned long 32

6.4 Memory Allocation of Bit Fields

Bit fields are allocated so that boundaries according to each member type are not extended across.

[Examplel] unsigned short int type bit fields

struct fieldl {
unsigned
unsigned
unsigned
unsigned
unsigned

short
short
short
short
short

PO OT®

O, WNEF

MSB 15

14 i

13

12

P

{10

9 | 8l 71 6 |l 51 4] 30 2] 1] o] LsB

b

C

e *

Figure 6-1 Default Bit Image of fieldl (* denotes a blank bit)

24

Chapter 6 Structures and Bit Fields

[Example2] unsigned char type bit fields

struct field2 {

unsigned char a:l;

unsigned char b:2;

unsigned char c:3;

unsigned char d:1;

unsigned char e:3;

unsigned char f:2;
};
MSB | 7 6 | 5 4 1 312 1 0 | LsB

a b c d|* low address
MsB | 7 i 6 i 5 4 i3] 2] 1] o0]LsB

e f x| x high address

Figure 6-2 Default Bit Image of field2 (* denotes a blank bit)

Byte inversion is performed to the data type which size is 2 byte or more, and it is allocated to memory.
By performing byte inversion, the low-order byte is allocated to smaller address, and the high-order byte
is allocated to bigger address.

high-order byte low-order byte
|| ||| ||| ||| || ||| | Offset of memory
~ e > g ~ location
L, w0

» +1

6.5 Changing Memory Allocation of Bit Fields

When changing the bit field memory allocation sequence, add the -Xw option and compile. With the
default, the bit field is allocated from the most significant bit(MSB). When the -Xw option is specified,
each element of the bit field is allocated from the least significant bit (LSB).

25

Part 2 How to Use the Compiler System

IChapter 7 Interrupt Processing

7.1 Definition Interrupt Function

In order to define maskable interrupt function, " __interrupt” or "__regbank™ is specify. Compiler
outputs "reti" to return from maskable interrupt function.

void __interrupt intrl(void) /* maskable interrupt */

intvVar++;

}
void __regbank(l) regintrl(void) /* maskable interrupt */

intvVar++;

7.2 Definition Interrupt Vector

In TLCS-900 Family CPU, interrupt vector table is divided into several function pointer (4 byte).
When you create a interrupt vector by C program, please define by array of function pointer. The
example of description is in 4.3.3 "Program for Interrupt Processing".

7.3 Enable Interrupt and Disable Interrupt

731 __DI(), __EI()and __EI900()

__DI(), __EI() and __EI900(<level>) are specified in order to perform interrupt-disable/interrupt-
enable. __DI(), __EI()and __EI900(<level>) are defined by "stdlib.h" as macro. When you use them,
please include "stdlib.h".

#include <stdlib.h> /* necessary */

void func(void)

.
int n;
int intvar;
__DIQ; /* interrupt-disable */
for(n=0; n<100; n++) { /* interrupt-disable area */
intVar += n; /* T */
/* - */
/* skip */ /* - */
__EI1Q; /* interrupt-enable */

The command "DI" that means interrupt disable to the place which described " DI();" is inserted.
And, the command "EI" that means interrupt enable to the place which described *__EI();" or
" __EI900(<level>);" is inserted. "__EI900(<level>);" can specify the interrupt level.

[Caution] When"__DI();","__EI();" or"__EI900(<level>);" is described at top of function,

"DI"/"EI" is outputed after entrance processing of a function (for example, allocating of

26

Chapter 7 Interrupt Processing

auto variable, or using register saving). Similariy, when"__DI();","__EI();" or
" _EI900(<level>);" is described at end of function, "DI"/"EI" is outputed front exit
processing of a function (for example, releasing of auto variable, or using register

restoring).

7.3.2 #pragma disinterrupt

"#pragma disinterrupt™ is specified in order to perform interrupt-disable whole function. The format of
"#pragma disinterrupt™ is as follows.

#pragma disinterrupt([<level>]) <Function Name>[, <Function
Name>, ...]

[Sample]

#pragma disinterrupt(0) func
int func(void)

/* skip */

b

27

Part 2 How to Use the Compiler System

Chapter 8 How to use Assembly Language in C

8.1

8.1.1

8.1.2

Program

Inline Assembly

Inline Assembly Format

There are 2 kinds of inline assembly format, they are __ ASM() and __asm(). For inline assembly
__ASM() and __asm(), the register allocation around these differs.

__ASM()

The compiler interprets it as the register to which the value was assigned not being updated, and
oerforms register allocation. Therefore, when the register value is updated in __ ASM('), a program may
not operate correctly.

In the case of the following example, register allocation is not suspended at point (a), and is performed
up through point (b).

() /* During this time, register allocation is not divided */

__ASM('Id WA,5™); /* —*/

(b) /* I */
__asm()

After the __asm() statement, the compiler interprets that all registers other than the register to saved
by a function call are updated, and it performs register allocation of a variable anew.

In the case of the following sample, register allocation is temporarily divided at point (a), and new
register allocation is performed from point (b).

(2) /* Divide the register allocation here */
__asm('ld WA,5");

(b) /* Start new register allocation from here */

Caution When Using Inline Assembly

An advantage when using __ ASM() is not affecting code efficiency. An advantage when using
__asm() is being able to use all register freely. Please use __ ASM() and __asm() properly according
to the purpose.

m Detection of error locations
Assembly language source lines described using inline assembly are not checked by the
compiler, and are transferred directly to the assembler. When an error is detected in the sauce line
described by inline assembly, the error line is output using the line number within the assembly
source file.
The error line can be confirmed when the assembler source file is created with compile -XF
option.

28

Chapter 8 How to use Assembly Language in C Program

m "end" instruction
In inline assembly, the "end" instruction must not be used.

m Restrictions on label use
In inline assembly, when the same label as the label which a compiler generates is defined, a
duplicate definition error occurs. The compiler generates a label name such as one where a
decimal number continues after "L" or "'S", so when using a label, avoid this kind of label name.

8.2 Register Pseudo Variables

TLCS-900 family Compiler is provided with register pseudo variables for doing direct operation of
CPU registers in C language. The purpose of doing direct operation of registers is mainly to deliver data
with the inline assembly.

When using register pseudo variables, be careful of the following.

The address operator "&" cannot be used for register pseudo variables.

It cannot be used as an argument of a function.

It cannot be used for reference and assignment of register pseudo variables in global.

It cannot be used the register pseudo variables to some registers.

If register pseudo variables is used, you have to make it register pseudo variables not have to interfere
in the register using evaluation of expression. When you use register peudo variables, avoid using it
by the complicated operation expression. In addition, please check to see assembly source file that is
outputed by compiler with -XF option, if the register value become intended result.

8.3 Variable Name and Function Name

The variable which are specified out of function in C source program, their name become the name as
an underbar added head of name in assembly source program. And the variable which is specified in
function, in order to use stack or register allocation, their name is not used in C source program.

If the function is normaly function without function qualifier (cdecl function) or interrupt function or
interrupt_n funciton or regbank function or regbank_n function, C compiler outputs a function name as
an underscore(_) added head of name. If the function is adecl function, C compiler outputs a function
name as an period(.) added head of name.

29

Part 2 How to Use the Compiler System

IChapter 9 How to use PIC/PID

9.1 PIC/PID Outline

PIC is the abbreviation for Position Independent Code, it is the code which is able to execute in any
location on a memory. PIC can be specified for each function, and the function which was specified as
PIC, it is called PIC function.

Meanwhile, PID is the abbreviation for Position Independent Data, it is the data which can be accessed
in same code without being dependent in any location on a memory. PID can be specified for each
variable, and the variable which was specified as PID, it is called PID variable.

PIC functions and PID variables can be moved on memory while the program is executing, and they
can also execute at move destination. Executing PIC functions and accessing to PID variables are
performed by using relative address from the initial address of each section. That is, by moving the whole
PIC/PID sections, they can perform completely like movement before.

9.2 PIC/PID Format

PIC function Format

The specification method of PIC function specifies __pic function qualifier.
It is also necessary to specify __pic qualifier at the prototype declaration, the external reference
declaration and using a pointer of function.

<type specifier> __pic <function name>([<argument>]);
/* Prototype declaration */
<type specifier> __ pic <function name>([<argument>])

PID variable Format

The specification method of PID variable has the method of specifying __ pid qualifier and setting up
individually, and a method of specifying #pragma pid_on and #pragma pid_off, and specifying two or
more variables collectively.

It is also necessary to specify __ pid qualifier at the external reference declaration.

|<type specifier> __ pid <variable name>;

#pragma pid_on
<type specifier> <variable name>;
<type specifier> <variable name>;

#pragma |c-)i d_off

9.3 How to use PIC/PID

In order to use this function, specification of PIC function and PID variable, a setup of the base section
and the base register, and a program transmission routine are required.

30

Chapter 9 How to use PIC/PID

A setup of the base register is performed with the transmission routine of a program. The base register

is certainly set up after transmission of PIC/PID section. The section name into which PIC function and

PID variable are summarized, and the base register are as follows.

Table 9-1 Section Name and Base Register used by PIC/PID

Item Section Name Base Register
NULL pointe for PIC pic_base XIX
PI1C function pic_code

Variables without initial value
which had PID specified
Variables with initial value XY
which had PID specified
Constant (const object) which
had PID specified

pid_area

pid_data

— PIC Base Register (XIX)

pic_code ™ pic_base

<€4— PID Base Register (XIY)
pid_area

[Caution] XIXand XI1Y register cannot be used for any uses other than the base register in a program

using PIC function or PID variable.

The followings are examples for a setup using PIC and transmission routine. The same processing is

required also at the case of using PID.

[Example] Flow of examples for a set up using PIC
m Startup File

(1) The base register setting.
m Link Command File
(2) The link command file setting.
m Transmission Routine
(3) Reference of symbol required for a transmission.
(4) Disabling interrupt.
(5) Code transmission.
(6) Enabling interrupt.
(7) The base register update.

< Startup File example (st_sample.asm) >

; Add the following setting to a startup file
pic_base section code large align=1,1 (D
dw O ¢

< Link Command File example (Icf_sample.lcf) >

/* Add the following setting (2) to a link command file */

memory
/* skip */
pic_I : org=0x010000, len=0x010000 /* (2) */

31

Part 2 How to Use the Compiler System

EMEM2 : org=0x020000, Ien=0xfc0000
code.l - org=0xfe0000, len=0x01ff00
}
sections
{ _
/* skip */
far_code org=0xfe0000 : {*(f_code)}
pic_code org=0x020000 : {*(pic_base) *(pic_code)} /* (2) */
}
/* skip */
__PCodeOrg = org(pic_code); /* (2) */
__PCodeSize = sizeof(pic_code); /* (2) */
/* PIC destination address */
__dst_PIC = 0x100000; /* (2) */
< Transmission Routine example (trans_sample.c) >
void movePIC()
__ASM(*'extern __dst_PIC, __PCodeOrg, __PCodeSize™); /* (3) */
__AsSM(C'di'™); /* (4) */
__ASM(" Id XDE,__dst_PIC™); /* (B) */
__ASM(* Id XHL,__PCodeOrg™); /> (5) */
__ASM(* Id BC,__PCodeSize™); /* (B5) */
__AsSM(" or BC,BC™); /* (65) */
__ASM(CT] z,PIC_CODE_0"); /* (6) */
__ASM(* Idirb (XDE+) , (XHL+)'™); /* (5) */
__ASM('PIC_CODE_0:""); /7 (B5) */
__AsM(ei™); /* (6) */
}
int __pic pfuncQ
{
return 1;
}
int mainQ)
int val;
movePIC();
__ASM(" Id XIX,__dst_PIC™); /7> (7)) */
val = pfunc(Q);
return val + 1;
}

32

Part 3 Checking and Improving
Programs

Chapter 10 Checking Programs

IChapter 10 Checking Programs

10.1 Confirming Method of Compiling, Assembling, and Linking
Results

10.1.1 Confirming Compiling Result

The compiling result can be confirmed with an assembler source file generated by specifying -XF
option. The following information is output in an assembler source file.

m Compiler version number
m Assembly language corresponding to a C source file

10.1.2 Confirming Assembling Result

The assembling result can be confirmed with an assembler list file generated by specifying -
option(suffix .Ist). The following information is output in an assembler list file.

Assembler version number and assembler option

Machine language corresponding to an assembly source file
List of defined symbols

Error or Warning message

10.1.3 Confirming Linking Result

The linking results can be confirmed with a map file generated by specifying -la option (suffix .map).
The following information is output in an map file.

Linker version and link options

Link command file contents

Error or Warning message

List of link target files

Memory image after linking sections
Address information allocated to symbols

35

Part 3 Checking and Improving Programs

Chapter 11 Efficient Program Writing Methods

In order to improve object efficiency, please take each following item into consideration enough, and
design and code it.

m The member of bit-field is set to unsigned char, and it is set as 1 bit.

struct bitpattern {
unsigned char b7:1;
unsigned char b6:1;
unsigned char b5:1;
unsigned char b4:1;
unsigned char b3:1;
unsigned char b2:1;
unsigned char bl:1;
unsigned char b0:1;

}:
m Avoid use of signed variables as much as possible.
Avoid use of long type and floating type variables as much as possible.
The integer type variables used frequently is allocated to the tiny area or near area.
By allocating integer type variables to tiny area or near area,, speed becomes quick. This setting
uses extended qualifier __tiny or __near. Change of allocation area will also change the section
name, therefore, the correction in a section definition part of a link command file or a memory
initialization of a startup file may be required.
m |t is made for operation of variables with a different type not to occur.
The type conversion is performed by the operation of variables with different type. Therefore, the
operation of variables with same type becomes small in object size.
m The shift counter of a shift operation specifies the constant number, without using variables.
The object size will become small if a shift counter is made into a constant number. For the detail
of the shift oeration, see the "TLCS-900 C Compiler Reference".
When making structure and array into the argument of function, pointer is passed as argument.
The recursive function containing many arguments and auto variables is not used
-XS option is specified.
The code that the object size becomes small is outputted. Although the memory utilization
improves, execution speed may deteriorate.
m -Xec option is specified.
The size of enumerator depends on the range of enumerators, the size of enumerator will become
small.
m The alignment of section is set as 1 byte.
The data is allocated by 1 byte alignment, the datas allocate close, and the section size become
small. This setting is used -ZA1, -ZD1, and -ZC1 options. However, since data mey be allocated at
the odd address, execute speed become slow.

36

Chapter 11 Efficient Program Writing Methods

Default(-XA2)
f_area section is 4byte

+0
+1

+2

char a

int b

< alignment

1 byte Alignment(-XAl)
f_area section is 3 byte

+0

+1

+2

+3

char a

int b

37

Part 4 Caution Items

Chapter 12 MCU Specification

IChapter 12 MCU Specification

12.1 Select CPU Type

CPU type of TLCS-900 family is specified as this option.

| -Nb[<CPU-type>]

<CPU-type> can be specify the value from 0 to 3, a corresponding type is as follows.

Table 12-1 CPU Type
CPU Type Meaning
TLCS-900 series
TLCS-900/L series, TLCS-900/L1 series
TLCS-900/H series
TLCS-900/H1 series

WIN | |O

If this option is omitted, it means -Nb1 is specified.

Unless it specifies CPU type, the control register cannot be used correctly, and malfunction may be
carried out. Since the control register which can be used and the control register map differ from each

CPU type, please be sure to specify it.

For example, in the processing using __ DMADO which is a control register pseudo variable, the object
codes differ in TLCS-900/L,900/L1 series and TLCS-900/H1 series. The detail of the control register, see

the "TLCS-900 C Compiler Reference", or . "data sheet" of each microcomputer.

[Examplel] the example of using __ DMADO
unsigned long vall;
void sample()
vall = __ DMADO;
bs
[Examplel-a] the object code for TLCS-900/L, 900/L1 series (-Nb1)
Object Source Statement
EB2F10 lIdc XWA,DMADO
F200000060 Id (al),XwA

[Examplel-b] the object code for TLCS-900/H1 series (-Nb3)

Object Source Statement

E82F20 lIdc XWA,DMADO

F200000060 Id (al),XWA

// when DMAS4 is used, E82F10 is outputted

41

Part 4 Caution Items

IChapter 13 Compiler Specification

13.1 Source Files Rules

The end of file is a line feed code.

The end of the file that C source file, assembler source file, or header file included in by each, should
finish with a line return. In the case of C language, this is determined in ANSI standard. When the end of
a file is NOTa line return, unexpected error may occur, so be sure to insert a line return.

13.2 Caution about Compiler

CPU register mode
The CPU register mode of each CPU of TLCS-900 family is supporting only the maximum mode. The
minimum mode is NOT supporting.

13.3 Relation between Debugging Function of IDE and Compiler
Optimization
The debugger (IDE) uses as an information source that is the information for the debugger
(debugging information) output by the compiler, making source level debugging possible. Debugging
information is attached to objects output by the compiler. Because of this, with compiler optimization,

when processes and variables are deleted and the execution sequence is changed, the following kind of
behavior may occur.

Can not see the variables with the debugger

Not executed according to the source program sequence

Not stopping at the breakpoint that is supposed to be executed
Stopping at the breakpoint that is not to be executed

13.4 Caution about Assembler

Call C language function from assembly language program

When calling the function described by C language in the assembly language program, it calls using
cal instruction or j instruction. The register which was being used in assembly program is not saved with
the function of C language. Therefore, save the registers before and behind a function calling.

13.5 Caution about Library
TLCS-900 family C Compiler links the following libraries.

c900ml.lib TLCS-900 family library
c900pic.lib TLCS-900 family library for PIC

These library files are stored in the lib directory that is in TLCS-900 family C Compiler install
directory. For detail of each libraries, see the "TLCS-900 C Compiler Reference".

42

Chapter 13 Compiler Specification

Reentrant

Reentrancy means beig able to guarantee operation when, before a certain function execution is
completed , that function is called again. For example, this would be a case of when an interrupt occurs
during execution of function f(), the same function f() is called during that interrupt prosessing.

A simple example of a function f(') when reentrance is impossible would be a function that is using a
global variable.

Reentrancy is not guaranteed for standard libraries and run time libraries that come with the product.

43

Part 4 Caution Items

Chapter 14 Error Meanings and Handling
Methods

14.1 Link Errors and How to Handle Them

TULINK-Error-231: Section "xxx'" at "Oxyyyy" load value overflow.
Truncdated

Since the value of the external reference symbol currently used within the applicable section won’t fit
in the object that is trying to embed, this error is occurred. The location which the error has occurred can
be identified by the following methods, so please check "the size which can be specified as an operand"
or "the size of symbol which can be specified as an operand"of the instruction which the error has
occurred.

(1) Generate a assemble list file(*.Ist) and a mapping list file(*.map) with option -1 option and -la
option at build.

(2) The address "0Oxyyyy" of the cause of an error identifies from "Link map" in a mapping list file,
which section of which file it is.

(3) The offset value from the head address of a section to an error occurring address is calculated.

(4) With reference to the assemble list file of the file leading to an error, an error location is
identified with the section specified by (2) based on the offset value calculated by (3).

TULINK-Warning-511: Unresolved external symbol '_errno”
TULINK-Error-209: Reference made to unresolved external symbol
"'_errno”

Since "errno™ used by error handling when using mathematic function or floating point number is not
defined, these errors are occurred.

When using mathematic function or floating point number, please define the int type variable "errno™
in a startup routine etc. and include "errno.h" in a file which using function point type. Please refer to
"4.5.1 Preparation for Using Arithmetic Functions and Floating Point Numbers" for the example of use in
a sample file.

|TULINK-Error-210: "xxx" at "Oxyyyy" won"t fit into configured memory |

Since the area which allocates output section "xxx" is insufficient, this error is occurred.

In section definition part of a link command file, it is specified that it allocates "xxx" section at address
"Oxyyyy" by allocation address specification (org) or start address specification (addr). When "xxx"
section is not contained in the memory area to which address "0xyyyy" corresponds, this error occurs.

Please adjust by specification of area which can be allocated "xxx" section, and change of "xxx"
section size.

|TULINK-Error-211: No space for "xxx" in "yyy" |

Since the area which allocates output section "xxx" is insufficient, this error is occurred.
In section definition part of a link command file, it is specified that it allocates "xxx" section at "yyy"
memory. In this specification, there are a case of output memory is specified and other is allocaated to

44

Chapter 14 Error Meanings and Handling Methods

predefined memory. When "xxx" section is not contained in specified "yyy" memory area, this error
occurs.

Please adjust by specification of area which can be allocated "xxx" section, and change of "xxx"
section size.

45

Part5 Appendix

Chapter 15 Using by Command Line

IChapter 15 Using by Command Line

15.1 Setting Environmental Variables

When using TLCS-900 family C compiler from command line, environmental variables must be set.

Table 15-1 Required Environmental Setting

Environmental Variables Setting Contents
THOME900 Directory path name in which TLCS-900 family C Compiler is installed.
TMP Compiler working directory path name.
PATH The path which attached \bin is added to the path specified by
environmental variable THOME900.

We will explain an example in which the installation destination and the working directory are the
following directory.

Installation desitnation C:\Program Files\TOSHIBA\T900
Working directory C:\TEMP\TOSHIBA\T900

Please set the environmental variables of Windows System as followin.

Decide whether to specify system environmental variables or user environmental variables according
to your use format.

path ”C:\Program Files\TOSHIBA\T900\bin”;%path%
THOME900 C:\Program Files\TOSHIBA\T900
TMP C:\TEMP\TOSHIBA\T900

[Caution] When the environmental variable(THOME900) settings are enclosed in double quotation
marks, the compiler may not start up correctly. Do not enclose the environmental variable
(THOME900) settings in double quotation marks.

Language tools cannot handle path names that include full-width characters. Because of
this, multi-byte characters cannot be used in the path name of environmental variables.

15.2 Command and Explanation Thereof

(1) Create an absolute object file

|cc900 -Nb1l -03 -g -0 sample.abs filel.asm stc96.c 1inc96.Icf |

1) Assemble filel.asm at TLCS-900/L1 series(-Nb1) and with debugging information(-g), and generate
filel.rel.

2) Compile stc96.c at TLCS-900/L1 series(-Nb1) and optimization level 3(-03), with output debugging
information(-g), and generate stc96.rel.

3) Link filel.asm and stc96.rel according to linc96.Icf, and generate sample.abs(-o sample.abs.)

49

Part5 Appendix

(2) Create aIntel HEX Format file

|tuconv sample.abs

1) Convert sample.abs to Intel HEX file, generate sample.h16.

(3) Create arelocatable object file

|cc900 -Nbl -03 -c -XF Ffile2.c

1) Compile file2.c at TLCS-900/L1 series(-Nb1) and optimization level 3(-03), and generate
file2.rel(-c). When doing this, leave file2.asm without deleting it(-XF).

(4) Create alibrary

[tulib -r x96.1ib file2.rel

1) Create x96.lib, and register file2.rel in the library. When x96.lib exists, update file2.rel to that.

50

Chapter 16 Transition to Macro Preprocessor

IChapter 16 Transition to Macro Preprocessor

TLCS-900 family C Compiler provied Macro Preprocessor.

This tool have the function both preprocessor (TUAPP) and macroprocessor (TUMPL) in previous
version product, however the syntax is different. Therefore, when you use preprocessor or
macroprocessor in the development, some modification needs in your source program to transfer for
Macro Preprocessor

For the detail of Macro Preprocessor, see the "TLCS-900 Assembler Reference".

16.1 Case of using Preprocessor

16.1.1 Comment

The comment starting with # after a preprocessing directive is abolished in Macro Preprocessor.
Macro Preprocessor regards the comment starting with # as a part of replace parameters, therefore it
will become unexpected result, and no error or no warning is output. When using comment starting with

#, modify comment to block comment using "/*" and "*/", or two consecutive slashes (//'), or line
comment starting with a semicolon (;).

; Before replacing :
#define AAA BBB # comment

= ANNNNNNNNNNNNN

;This is regarded as replace parameter

; After replacing :
#define AAA BBB /* comment */

16.2 Case of using Macroprocessor

16.2.1 ?include, ?ic

?include and ?ic function are abolished in Macro Preprocessor.

When using this function, modify this function to #include directive. Macro Preprocessor output a
error when ?include or ?ic exist.

; Before replacing :

?include <samplel.h>
?icC “sample2.h”
; After replacing :
#include <samplel._h>
#include “"sample2.h"

16.2.2 ?if, ?while, ?repeat

?if, 2while and ?repeat syntax are modified in Macro Preprocessor.

When using this function, modify old syntax to new syntax. Macro Preprocessor output a error
when ?if, ?while or ?repeat exist.

51

Part5 Appendix

Before replacing :
?1Tf (<condition>) then (
AAA

else (
BBB
) Fi

After replacing :
?i1f (<condition>)
AAA
?else
BBB
?endif

16.2.3 Escape Function, Blacket Function

The escape function and bracket function are abolished in Macro Preprocessor.
When using this function, modify source program using back slash or string control macro. Macro
Preprocessor output a error when these function use.

Before replacing :
?define(DDATA(datalist, name))(
?name: dw ?datalist
)

?DDATA(?(0x245, Oxlda, 0x333), tel)
After replacing :
?macro DDATA datalist, name
?name: dw ?substr(?datalist, 0, ?len(?datalist))

?endm

DDATA "'0x245, Oxlda, 0x333", tel

16.2.4 ?eject, ?genonly, ?gen, ?in, ?list, ?maclib, ?nolist, ?out, ?title

?eject, ?genonly, ?gen, ?in, ?list, ?maclib, ?nolist, ?out and ?title are abolished in Macro Preprocessor.
Macro Preprocessor output a error when these function exist.

16.2.5 ?define

?define function is abolished in Macro Preprocessor.
Currently, it enables to use ?define to consider about compatibility with Macroprocessor and Macro
Preprocessor. However, use #define or ?macro in new program, because of this compatibility deprecated

in future.

?define have two format as follows.

Format 1

Befor replacing :
?define(AAA) (BBB)

After replacing :
#define AAA BBB

52

Chapter 16 Transition to Macro Preprocessor

; Format 2

; Before replacing :
?define(AAA(parl, par2))
local labl lab2 (

?parl
?par2
?labl
?lab2

)
?AAA(L, 2) ; call

; After replacing :
?macro AAA parl, par2
labels labl, lab2

?parl
?par2
?labl
?lab2

?endm

AAA 1, 2 ; call

16.2.6 ?set

?set function is abolished in Macro Preprocessor

Currently, it enables to use ?set function to consider about compatibility with Macroprocessor and
Macro Preprocessor. However, use ?variable in new program, because of this compatibility deprecated in
future.

When ?set replace to ?variable, modify only declaration part.

; Before replacing :
?set(AAA, 1)
?AAA

; After replacing :
?variable AAA, 1
?AAA

16.2.7 ?egs, ?nes, ?Its, ?les, ?gts, ?ges

?eqgs, ?nes, ?lts, ?les, ?gts and ?ges specification are modified in Macro Preprocessor.

In Macroprocessor, if the result of these macro is true, the return value is Oxffffff, and if it is false, the
return value is 0x00. However, in Macro Preprocessor, if the result is true, the return value is 1, and if it
is false, the return value is 0. When you use these functions, please check about these macro result.

53

Part5 Appendix

; Macroprocessor :

?egs(abc, abc) // 0x00
?nes(ABC,AbC) // OXFFFFFfff
?1ts(ABC,abc) // OXFFFFffff
?1es(ABCD,ABC) // 0x00
?9ts(0x11,0x13) // 0x00

?ges(abcde,abcde) // OXFFEFFfff

; Macro Preprocessor :

?egs(abc, abc) // 0
?nes(ABC,AbC) // 1
?1ts(ABC,abc) // 1
?les(ABCD,ABC) // 0
?9ts(0x11,0x13) // 0
?ges(abcde,abcde) // 1

16.2.8 ?substr

?substr specification are modified in Macro Preprocessor.

In Macroprocessor, the first character of character string is assumed as 1 column. However, in Macro
Preprocessor, the first character of character string is assumed as 0 column. When you use this function,
please check about this macro result.

; Macroprocessor :
?substr(abcdefg,8,1) // NULL
?substr(abcdefg,3,0) // NULL
?substr(abcdefg,5,1) // e
?substr(abcdefg,5,100) // efg

; Macro Preprocessor :
?substr(abcdefg,8,1) // NULL
?substr(abcdefg,3,0) // NULL
?substr(abcdefg,5,1) // T
?substr(abcdefg,5,100) // fg

54

Chapter 17 Specification Change of PIC/PID Function

Chapter 17 Specification Change of PIC/PID

Function

TLCS-900 family C Compiler can be used PIC/PID function.

A specification change of this function is made from the PIC/PID function of previous version product.

Therefore, when you use this function in your development by previous version product, some

modification needs in your source program to upgrade our product.
For the detail of this function, see the "TLCS-900 C Compiler Reference".

17.1 Specification Change of PIC

17.1.1 Method for Specifying PIC Function
The method for specifying PIC function was modified.

The following functions and description methods that have been specified by the previous version

products was abolished by this specification change.

#pragma near_pic_on
#pragma near_pic_off

#pragma far_pic_on
#pragma far_pic_off

__near_pic

__Ffar_pic

When specify PIC function, use extended qualifier __pic. In addition, the displacement of PIC

functions is only "far" by this specification change, please note.

; Before replacing :
#pragma far_pic_on

#pragma far_pic_off

{

}
; After replacing :

return 1;

{
+

return 1;

int fpic_funcl(void); /* prototype declaration(far) */

char __ far pic fpic_func2(void) /* function definition(far) */

int __ pic fpic_funcl(void); /* prototype declaration(far) */

char __ pic fpic_func2(void) /* Tunction definition(far) */

17.1.2 Section Name which Allocates PIC

The section name which allocates PIC functions was changed to "pic_code".

Please correct the files (link command file, etc.) which specifies the section name (“near_pic",

"far_pic") outputted with previous version products.

55

Part5 Appendix

17.2 Specification Change of PID

17.2.1 Method for Specifying PID Variable

The method for specifying PID variable was modified.
The following functions and description methods that have been specified by the previous version

products was abolished by this specification change.

#pragma near_pid_on
#pragma near_pid_off

#pragma far_pid_on
#pragma far_pid_off

__near_pid

__Ffar_pid

When specify PID variable, use extended qualifier __pid or #pragma pid_on / pid_off. In addition, the
displacement of PID variables is only "far" by this specification change, please note.

; Before replacing :

#pragma far_pid_on
int fpid_ vall; /> far */
#pragma far_pid_off

char __far_pid fpid_val2; /* far */
; After replacing :

#pragma pid_on

int fpid_vall; /* far */
#pragma pid_off

char __ pid fpid val2; /* far */

17.2.2 Section Name which Allocates PID

The section name which allocates PID variables was changed to following.

PID variables without initial value : pid_area
PID variables with initial value . pid_data
PID variables added const attribute . pid_data

Please correct the files (link command file, etc.) which specifies the section name (“near_pid_area",
"far_pid_area", "near_pid_data", "far_pid_data") outputted with previous version products.

56

History

Issue

Date

Update

1st Edition

7 Jan, 2009

1st Edition

TLCS-900 Compiler System User’s Guide [1st Edition]

The Date of Issue: 7 Jan, 2009

TDE120-01

	TLCS-900 Compiler System User's Guide

	INDEX

	Part 1 Compiler System Overview
	Chapter 1 Before Using the Compiler System
	1.1 Explanation of Each Manual
	1.2 How to Read the Manuals

	Chapter 2 Outline of System Development
	2.1 Developing Microcomputer Application Systems

	Chapter 3 Compiler Mechanism
	3.1 Compiler Overview

	Part 2 How to Use the Compiler System
	Chapter 4 Mechanism for C Program Operation
	4.1 Startup File
	4.1.1 Preparation for Using Stack
	4.1.2 Memory Initialization
	4.1.3 Hardware Initialization
	4.1.4 Calling the Main Function and Processing after End

	4.2 SFR Header File
	4.3 SFR, Vector Definition File
	4.3.1 SFR Definition
	4.3.2 Interrupt Function Definition
	4.3.3 Program for Interrupt Processing

	4.4 Link Command File
	4.4.1 Memory Definition Part
	4.4.2 Section Definition Part
	4.4.3 Symbol Definition Part

	4.5 Standard Library Definition File
	4.5.1 Preparation for Using Arithmetic Functions and Floating Point Numbers
	4.5.2 Preparation for Using Abort Function
	4.5.3 Preparation for Using Exit Function
	4.5.4 Preparation for Using Heap Areas

	Chapter 5 Variable Type and Function Type
	5.1 Variable Type
	5.2 Function Type

	Chapter 6 Structures and Bit Fields
	6.1 Memory Allocation of Structure Members
	6.2 Changing Alignment of Structure Members
	6.3 Bit Fields Type
	6.4 Memory Allocation of Bit Fields
	6.5 Changing Memory Allocation of Bit Fields

	Chapter 7 Interrupt Processing
	7.1 Definition Interrupt Function
	7.2 Definition Interrupt Vector
	7.3 Enable Interrupt and Disable Interrupt
	7.3.1 __DI(), __EI() and __EI900()
	7.3.2 #pragma disinterrupt

	Chapter 8 How to use Assembly Language in C Program
	8.1 Inline Assembly
	8.1.1 Inline Assembly Format
	8.1.2 Caution When Using Inline Assembly

	8.2 Register Pseudo Variables
	8.3 Variable Name and Function Name

	Chapter 9 How to use PIC/PID
	9.1 PIC/PID Outline
	9.2 PIC/PID Format
	9.3 How to use PIC/PID

	Part 3 Checking and Improving Programs
	Chapter 10 Checking Programs
	10.1 Confirming Method of Compiling, Assembling, and Linking Results
	10.1.1 Confirming Compiling Result
	10.1.2 Confirming Assembling Result
	10.1.3 Confirming Linking Result

	Chapter 11 Efficient Program Writing Methods

	Part 4 Caution Items
	Chapter 12 MCU Specification
	12.1 Select CPU Type

	Chapter 13 Compiler Specification
	13.1 Source Files Rules
	13.2 Caution about Compiler
	13.3 Relation between Debugging Function of IDE and Compiler Optimization
	13.4 Caution about Assembler
	13.5 Caution about Library

	Chapter 14 Error Meanings and Handling Methods
	14.1 Link Errors and How to Handle Them

	Part 5 Appendix
	Chapter 15 Using by Command Line
	15.1 Setting Environmental Variables
	15.2 Command and Explanation Thereof

	Chapter 16 Transition to Macro Preprocessor
	16.1 Case of using Preprocessor
	16.1.1 Comment

	16.2 Case of using Macroprocessor
	16.2.1 ?include, ?ic
	16.2.2 ?if, ?while, ?repeat
	16.2.3 Escape Function, Blacket Function
	16.2.4 ?eject, ?genonly, ?gen, ?in, ?list, ?maclib, ?nolist, ?out, ?title
	16.2.5 ?define
	16.2.6 ?set
	16.2.7 ?eqs, ?nes, ?lts, ?les, ?gts, ?ges
	16.2.8 ?substr

	Chapter 17 Specification Change of PIC/PID Function
	17.1 Specification Change of PIC
	17.1.1 Method for Specifying PIC Function
	17.1.2 Section Name which Allocates PIC

	17.2 Specification Change of PID
	17.2.1 Method for Specifying PID Variable
	17.2.2 Section Name which Allocates PID

	History

