TOSHIBA

TLCS-900 C Compiler Reference

1st Edition

TOSHIBA Corporation Semiconductor Company

(C)Copyright TOSHIBA CORPORATION 2009 All right reserved

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice. (W11AE-01)

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, the hardware
and/or software incorporated in the TOSHIBA products listed in this document (“TOSHIBA Products”) in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the
responsibility of the customer, when utilizing TOSHIBA Products, to fully comply with the standards of safety in
making safety design for the entire system, and to avoid the situations in which a malfunction or failure of such
TOSHIBA Products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA Products are used within specified operating ranges
as set forth in the specifications for this product, the specifications for the semiconductor devices under
evaluation, and any other related information. Also, please keep in mind the precautions and conditions set forth
in the “TOSHIBA Semiconductor Reliability Handbook” and “Instruction Manual” or “Operation Manual” that
accompany this product and any devices connected to this product.

Please always confirm the latest information of the TOSHIBA Products released on the web page of
microcomputer in the web site of TOSHIBA Semiconductor Company.

(http://www.semicon.toshiba.co.jp/eng/) (WO1AE-01)

- The TOSHIBA Products are intended for usage in the functional evaluation of semiconductor devices. TOSHIBA
Products shall not be used for purposes other than functional evaluation, such as for verification of device
reliability. The TOSHIBA Products shall not be incorporated this product into customer products. The TOSHIBA
Products shall not be converted, disassembled, modified, or used outside its specified operating range of the
TOSHIBA Products listed in this document.

- The TOSHIBA Products are intended for the functional evaluation of semiconductor devices that are designed
for use in general electronics applications (e.g., computer, personal equipment, office equipment, measuring
equipment, industrial robotics, and domestic appliances). These TOSHIBA Products are neither intended nor
warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or
failure of which may cause loss of human life or bodily injury (“Unintended Usage”).

Without limiting the generality of the foregoing, unintended Usage include atomic energy control instruments,
airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, and all types of safety devices. The TOSHIBA Products shall not be used for
Unintended Usage. (W02BE-01)

- The products described in this document shall not be used or embedded to any downstream products of which
manufacture, use and/or sale are prohibited under any applicable laws and regulations. (W03AE-01)

- TOSHIBA does not take any responsibility for incidental damage (including loss of business profit, business
interruption, loss of business information, and other pecuniary damage) arising out of the use or disability to use
the product. (WO4AE-01)

- The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
may result from its use. No license is granted by implication or otherwise under any patents or other rights of
TOSHIBA or the third parties. (WO6AE-02)

- Product names mentioned herein may be trademarks of their respective companies. (W07AE-02)

(SWE1-2E-2) ©2008 TOSHIBA CORPORATION, All rights reserved.

Preface

Preface

Thank you for using Toshiba microcomputer products.

This manual describes how to use the microcomputer development system product you
have purchased. Please keep this manual to hand when you use the product.

Toshiba will continue to make every effort to improve our products to better meet the
needs of our customers. We will highly appreciate your continued patronage of Toshiba
microcomputer products also in future.

- Microsoft®, Windows®, Windows® 2000, Windows® XP, and Windows Vista® are
either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

prefaceE-03

Preface

Technical support

The "readme.txt" file is included with the product package to help you use this product.
If you have any further questions regarding the content of this manual, please do not
hesitate to contact your local Toshiba sales representative.

Our technical support service is available if you encounter any phenomenon that seems
to be faulty while using this product. At your request we will investigate the cause of the
phenomenon and report back to you. To use this service, you need to provide us with the
data that enables us to reproduce the phenomenon, such as the operation procedure, etc.
Please note that we may not be able to deal with a phenomenon that cannot be reproduced.

INDEX

I INDEX I

Part 1 ADOUL thiS DOOK .o e 1
Chapter 1 Explanation of thismanual ... e 3
1.1 How to Read the ManUALS...........ccoeviiiiiiie e 3

T A2 [0 4 o Yo [V Yo § o o PRSP 5
Chapter 2 Compiler INTrodUCTION ... e 7
2.1 3T 1[0 7

2.0 1 WAt 1S @ SBCHIONT. ..o 7

N o o] I I/ 01 TP PP TP O UPPPPPPPPPRN 8

P R BT ot o] o N A U =TSRSS 8

2.2 DISPIACEMENTeeeiieee it e e e e 9

2.2.1 What IS Displacement?.......cooo oo 9

2.2.2 DiSPlaCemMENt TYPES ...uueeiieeieieee ettt e e et e e e e e e e e e e e annees 9

2.2.3 Relationship Between Sections and Displacementeeeeeeeeiiniiiiiieieeee e, 9

Part 3 C Language SPeCifiCatiONS...........uuiiiiii i 11
Chapter 3 Toshiba Extended Specificationsoooiiiiiiii e 13
3.1 Priority Sequence of Extended SpecifiCationscoovviiiiiiiiiiiiiiiiiiiiiiiiiieeeeieeeeeiieees 13

3.2 Extended QUAlIIEroi i 13

3.2.1 FUNCLION QUANTIEI..... e e 13

3.2.2 Memory QUAlITIEE ..o 14

3.2.3 Other QUANIFIEN.....uuee e e e e e e e e e aaeraans 15

3.3 HPragma DIreClIVESooo i 15

3.3 L FUNCHON DY PR e 15

3.3.2 DISPIACEMENT ... 15

3.3.3 EXEEIN DIMBCHIVE ...coi ittt e e e st r e e e e e e ane 16

I I V@ D O PP P PP OPPPRN 16

3.3.5 Disable INterrupt DIreCIVEccoeeeiieeiieeee e 16

3.3.6 Structure Packing DireCtiVeooooiiiiiieiii e 17

3.3.7 Restriction of Warning Output DireCtiVe...........coooiiiiiiiiiiii 17

3.3.8 PID DIFECLIVE. ... teei ettt ettt ettt e et e e s abb e e e s e are e e e enaes 18

3.4 O TIONS . et a e as 18

3.5 Default StatUS ..o 18

3.5.1 Address and Displacementooooiiiiiiiiii 18

3.5.2 Pointer DisplacemMentcoooiiiiiiii 18

3.5.3 Section Name and Displacementccoooeiiiiiii i 19

3.6 AlIGNMENT. ... 19

3.7 Shift OPEIAIONS ... 19

3.8 INTANSIC FUNCTIONS ...t e e 19

3.9 INHNE ASSEMDIY L. 20

310, L ASIMI()ttt e r e r e s are e e e aaees 20

302 Attt 20

3.10 Register PSeUdO Variableoooiiiiiiiiiiiiiiiiiiiiii ittt eeeeeeeeeeees 20

3.10.1 General Register Pseudo Variables. ... 21

3.10.2 Control Register Pseudo Variables ... 21

3.11 Pre-defiNed IMACIOScoi ittt e e e e s s r e e e e e e e e 22

3.12 NON-ANSI SPeCIfiCatioNScooii i 22

3.12.1 Integral PromOtioncooooiiieee e 22

3.12.2 Arithmetric Conversion of Multiplication and DiviSion ..., 23

3.12.3 NUMEICAl NUMDET ...t e e e e 24

3.13 o (O] o Tol 1 Tor= 11 o] o PP PPPRPPPPPPPPPPPNS 25

INDEX

3.14 o 1 IS o= ToT 1 Tor= L1 o S 26
Part 4 Generating Execution Programs from the Command Line........................... 27
Chapter 4 Compiler Driver OVENVIEW ..ot e aeeeas 29
Chapter 5 (@ o] o] o I LT o] 0] € o) 13 30
-H# Display the tool that activates the link process from compiling 30

-A Compile in accordance with ANSI specificationcccccccuvinneinnnnn. 30

-D Define the preprocessor MACKOuveeeeeeeeiiiiiiiiieeee e e e et eeee e e e e 30

-E Output preprocessor processing results to standard output.................... 31

-F Specify the value which fill ablank area...............cccoeeeeee 31

-1 Specify Search Path for Include FileS..........uuvueinne 32

-J Recognize the kanji code included in a source filecoovvvvvvieenenn... 32

-L Specify a search path for input file to the linkerooc 32

-Mi NoO Processing Macro PreproCessorcoeeveeeeeeeeieeieeeeeeeeeeeeeeeeeeeeeeeee, 33

-Nb SEIECE CPU TYPE 1uvvieiiiiiiineieiiiinitn s s n e n e 33

-O Perform Optimizationeeviiiiiiiiiie e 33

-P Execute only the PreproCeSSOrevveiieiiiiiiiiiiiiiiiieieeieeeieeeeeeeeeeeeeeeaeeees 34

-S Create assembly language SOUrce Programeeeeeeeeeeneennnnnnnnnnnnnns 34

-U Disable the specified preprocessor macro definition.............................. 35

-V Output version iNformationcccccviiiiiiiie e, 35

-W Transfer option to specified toolccooooiiiii e 36

-XA, -XC, -XD Change the Section Alignment................cccc. 36

-XE Handles \ in assembler source files as a character.............ccccccceeevinnnne. 37

-XF Leave an assembly language Source programcoooecvvveeeeeeeennnnnne 37

-XS Output the code by Size OptiMIZatioN.............ueeeueiiiiiiae 37

-Xaa, -Xac, -Xad Create the section for 1 byte variables............ccccccevinnninnnnnns 38

-Xc Specify the function type to cdecl............vveeiemiii e 38

-Xec Change the type of the enumeration constant.............cccccccuvvvemiiennnnnnnn. 39

-Xns Deter Integration of Stack Freeing ... 39

-Xp Packing the StrUCTUIe.........ccvvviiiiiieiieiieeeeeeeeeeeeee e reeeneneees 40

-Xr Specify the function type to adecleueveeiiiniiinie 40

-Xsc Change the processing method of shift operation..............cccccccvvevvnnnne. 40

-Xub Handle bit field members as unsigned..............ccc 41

-Xuc Handle the char type as unsigned char type...........ccccceeeiiii. 41

-Xw Change the bit field allocation SEQUENCE............uuvreerieerreiiiiniriiiinnienannnns 41

-ZA, -ZC, -ZD, -ZT Change the default displacementcccccccvuuierniirnnnnnnnnnns 42

-Za, -Zc, -Zd, -Zt, -Zi Change the section name and the displacement.............. 42

-C Create a relocatable ODJECT..........uuuuiriiiii 43

-e Create an error LSt file. ..o, 43

-f Read the file that describes the option to be used.............coccviiiieeeiennn, 43

-g Outputs debugging iNfOrmMation 44

-l Create @ liStfile ... 44

-0 Specify an output file NAMEuvveeieiiii 45

-r Perform incremental linKingcooviiiiiiii e, 45

-S Perform Macro Preprocessor Identifier definition............ccccccvvveiinnnn. 46

-u Ignore predefined MACTOSuiiiiiicie e 46

-u Register undefined symbols to the symbol table..........ccccccovvvvvvvveveennn... 46

-wW Set the Warning LeVEL..........ocuuuiiiiiiiiiiie e 47

Part 5 OPtIMIZATIONS ...cooiiiiiiiiiiiiie et 49
Chapter 6 L@ 0]] .4 4= 1 0] g1 51
6.1 Optimizations by C COMPIIETuuieeee s 51
6.1.1 Assignment of Variables to RegiSters.........ccccevveeiiiiii 51
6.1.2 Integrated Stack Release...........cooveeeiiiiii e 51
6.1.3 Minimum Optimizationccoeeeii i 52
6.1.4 Branch Optimizationsccooeeiiiii i 52
6.1.5 Unnecessary Instructions Elimination..............cccccoe i 52
6.1.6 Copy Propagationccooeeiiiiii i 53

6.1.7 Common Sub-expression EMINation.............ccccoeeeiiiii 53

6.1.8 L0OPp OptimizationsSccooeeeieeei e 54

6.2 OPtIMIZALIONS DY USEI .. .uuuiiiiiiiiiiiiiiiiiiii e s s e e e e e e e e e as 54

6.2.1 Optimizations when Describing Source Program............cccceeeeieeeiie e, 54

6.2.2 Optimizations by OptioNcooooiiiiiii 54

Part 6 Standard Library FUNCTIONSuuiiiiiiiiiiiiiiiiiiiiiiiiiiii e 57
Chapter 7 Standard Library OVEIVIEWc.uiiii i e 59
Chapter 8 L Lo 10 T T [60
Chapter 9 Library FUNCHION ... e 61
9.1 Standard Library FUNCHION LiSt..........uuuuuuiueiiiiiiiiiii e 61

9.2 RUNEIME LIDrary LiSt......ovveieiiiiiiiiiiieiiieeeee ettt eeeeenenneenreenrennnnnnes 63

Part 7 EITOI MESSAQE. .. .ottt e e e e eaa s 65
Chapter 10 Error Message FOrMALo.ieeiee ettt e ee e 67
10.1 TYPES OF EFTOF IMIESSAGES. .. ceeeeeeiiititteeeee e e e ettt e e e e e ettt e e e s e st e e e e e e e e nnnbeeeas 67

10.2 Error Message FOIMAL..........uuviiiiiiiiiiiiiiiiieiieeeeee ettt nnennnenes 67

Chapter 11 DIiVEr ErrOr IMESSAJE ... ueeeeeieeee ettt ettt e e e e e e e e eneaes 68
11.1 Driver Fatal ErTOr ... 68

11.2 DIIVEE WAINING. ..ceiiiiiiiiiiiii ettt e e e e e st e e e e e e e e s annneees 68

Chapter 12~ C Compiler Error MESSAQE. cuu ettt ettt e e 69
12.1 C Compiler Fatal EXTOrooieiiiiiieeee ettt 69

12.2 C COMPIIET EFTOF ...ttt e e e e e e e 70

12.3 C COMPIIEr WAIMING....ciiiiiiiiiiiiie ettt e e e eeeee s 77

AP PEND DX e 85
A ANSI Processing System Dependence Specifications...........c.ooviiiiiiiiiiiiiiiiiaeaa.. 87
Al Definitions and CONVENTIONSuuviiiiiieeiiiitiie et e e 88

O R 120 21 - OO PP OPUPRTRUOPPR 88

AL2 [3.14 OBJECL] eeeiieiiiiiie ettt e e e e arae e 88

A2 ENVIFONMIENT. ...t e e e e e e e e e e s reeeeeeeanes 88

A2 1 [5.1.1.2 Translation phases]ccooooiiiiiiiiii 88

A.2.2 [5.1.2.1 Freestanding envirONmMeNt]..........ooooiiiiiiiiiiii 88

A.2.3 [5.1.2.2.1 Program StartUp]ccooeeeeeeiieeeeeeeee e 89

A.2.4 [5.1.2.3 Program eXeCULION].....ccooiiiiiiiiii e 89

A.25 [5.2.1 CharaCter SEtS] ...cceeieeieiieii e 89

A.2.6 [5.2.4.2.1 Sizes of integral tyPes]ccoeeerreiiiei 89

A.2.7 [5.2.4.2.2 Characteristics of floating types]cooorrrriiiii 91

A3 (=TT 18 E= o TP PPPRRRUUPPPPPTON 93

A3l [6.1.2.5 TYPES] ceeeiitiiie ettt e ettt ettt ettt ettt e et e e b e e e e bbe e e e e aaraeeaen 93

A.3.2 [6.1.3.1 Floating CONSTANTS].....ccceiiiiiiiieiee e 93

A.3.3 [6.1.3.4 Character CONSLANTS]......cceeiiiiiiiiiee e 93

A.3.4 [6.1.7 Header NAMES] . .coeiiiieeeee e 9

A.3.5 [6.2.1.1 Characters and iNtegers]coeeriiieiiiiiiie i 94

A.3.6 [6.2.1.2 Signed and unsigned iNtEGErs]cooeeiriiriiiiiii e 94

A.3.7 [6.2.1.3 Floating and integral] ..o 95

A.3.8 [6.2.1.4 Floating tyPeS] - .ceeeeeeeeeieeie e 95

A.3.9 [6.3.2.3 Structure and union MEMBDBErS]........ooori i 95

A.3.10 [6.3.3.4 The Sizeof OPerator]ccooiiiii i 95

A.3. 11 [6.3.4 CaSt OPEIALOIS] .coeeeeeeeieee e 96

A.3.12 [6.3.5 Multiplicative Operators]cooeeiiiiiiiiii i 96

A.3.13 [6.3.7 Bitwise shift Operators]........ccooor i 96

INDEX

B

A.3.14 [6.5.1 Storage-class SPeCIfiers].......ccccccuviiiiiiiiiii 96
A.3.15 [6.5.2.1 Structure and union Members]..........ccceiiiiiii 97
A.3.16 [6.5.3 Type SPECITIEIS]..ccciieiiii i 97
A.3.17 [6.8.1 Conditional inClUSION]cccooiiiiiiii 97
A.3.18 [6.8.2 Source file INCIUSION]........ccooiiiii 98
A.3.19 [6.8.6 Pragma direCtive].......ccooiiiiiiiiiii 99
A.3.20 [6.8.8 Predefined macro Names]........ccceeeieeiiiiiiii i 99
LI L = U0 T T T 100

Vi

Part 1 About this book

Chapter 1 Explanation of this manual

IChapter 1 Explanation of this manual

This manual includes specifications relating to C language, compiler option contents, and the like.

1.1 How to Read the Manuals
Here, we will explain the format description rules.

Format Description Rules

[Format Description Example]

#pragma section <Section Type> [<Section Name>]
[<Displacement>]|<Start Address>]

#pragma section For commands and options, etc., parts that do not have the enclosure symbols or
delimiting symbols described hereafter are noted as is in the actual program.

<Section Type> Specifiers enclosed in < > describe character strings or numerical values specified
within < > in the actual program.

[<Section Name>]Specifiers enclosed in [] can be omitted in the actual program.

[<Displacement> | <Start Address>]
For specifiers delimited by " |, specify one of those items in the actual program.

Part 2 Introduction

Chapter 2 Compiler Introduction

IChapter 2 Compiler Introduction

This manual provides information about the specifications of the compiler contained in the TLCS-900
family C Compiler. In this chapter, we will explain the terminology used in this manual.

2.1 Section

2.1.1 What Is a Section?

A section indicates a respective collection of data or code categorized by type. A section is also the
smallest unit when indicating memory allocation using link. Following, we will explain a summary of
this.

The compiler system generates files that operate on the CPU from a program noted in C language or
assembler language. These files are called absolute object files. The compiler system generates absolute
object files using the following procedure.

1. The compiler translates a C language source program and generates an assembler source program,
and outputs this to an assembler source file.For the output assembler source program, code and
data are categorized according to type. a collection of categorized code or data is called a section.

2. The assembler analyzes the assembler source file and translates it into machine language, and
generates re-allocatable files for which the address has not been determined. These files are called
relocatable object files.

3. The linker allocates the final address for executing on the CPU the code or data contained in a
relocatable object file. As a result, an absolute object file is generated.

Assembly Source File) :
C Source File Relocatable Object File Absolute Object File
Code 1 > Code 1
—
Program A
Data 1 ~ /ﬂ Code 1
ks Data 1
Data 2 ™ T Data 1
—>
Program B
J Code 1 Nal Data 2
Data 1

Part 2 Introduction

2.1.2 Section Types

In this section, we will explain a detailed explanation of the section types.

With the compiler, five types of sections have been prepared, including area sections, code sections,
const sections, data sections, and io sections, to express the types of code and data. Each section
expresses data for which an initial specifier has not been specified, instruction code, data for which
rewrite is not performed, data for which an initial specifier has been specified, and data that expresses 1/0.

Table 2-1 Section Categorization

Section Name Type Items Subject to Categorization

area section data Data for which an initial specifier has not been specified
code section code Instruction code (mnemonic)

const section data Data for which rewrite is not performed

data section data Data for which an initial specifier has been specified

io section 1/0 Data that expresses 1/0

The compiler analyzes the C source program, and depending on the data or code type, performs five
type section categorization. The compiler uses section directives to define each section within the output
assembler source file.

For information on section directives, see the "TLCS-900 Assembler Reference™.

2.1.3 Section Names

In the five types of sections, it is possible to give a name to each item. This is called a section name.

When there is no section name specified for a C source file, a name prepared in advance by the
compiler is given to each section. This name is called a pre-defined section name. Pre-defined section
names are determined from section type and displacement. For information on displacement, see Section
2.2, "Displacement".

Table 2-2 Pre-Defined Section Names

Pre-Defined Section Name Displacement Section Type
f area far
n_area near area
t area tiny
f data far
n_data near data
t data tiny
f const far

const
n_const near
f code far

code
n_code near
. Nothing .

< > . .

lo_ssymbol (absolute address specification) 10

For information on the specification method and changing method for section names, see Chapter 3,
"Toshiba Extended Specifications".

Chapter 2 Compiler Introduction

2.2 Displacement

2.2.1 What Is Displacement?

The compiler can specify to which address space on memory to allocate data such as variables or
pointers. The range of this address space is called displacement.

2.2.2 Displacement Types

The compiler has displacement according to the address space range in which data is allocated. The
address spaces that show each displacement are as shown in Table 2-3.

Table 2-3 Relationship Between Displacement and Address Space

Displacement | Address Space Where Data Can Be Allocated
tiny 0x0 - Oxff

near 0x0 - Oxffff

far 0x0 - Oxffffff

The compiler attempts to output the optimal code for accessing data according to the displacement type.
Because of this, there are cases when it is possible to access data with less code depending on the
displacement specification.

For information on the displacement specification method, see Chapter 3, "Toshiba Extended
Specifications".

2.2.3 Relationship Between Sections and Displacement

With the compiler system, data is categorized by sections. The address space which allocates data is
limited according to specify the displacement to the categorized data. Therefore, the code for accessing to
data is controlled.

The specification for allocation of a section on the memory is done by a file called a link command file.
For information on link command files, see the "TLCS-900 Assembler Reference".

Part 3 C Language Specifications

Chapter 3 Toshiba Extended Specifications

IChapter 3 Toshiba Extended Specifications

In this chapter, we will describe the Toshiba extended specification which is a unique function of this
company.

3.1 Priority Sequence of Extended Specifications

In principle, the priority sequence of related extended specifications will be according to the following.

Extended qualifier
#pragma specification
Option specification
Default status

H w DN

3.2 Extended Qualifier

A extended qualifier specifies just before target symbol name.

3.2.1 Function Qualifier

A function qualifier specifies the behavior to a function.

___interrupt

The function specified with this function qualifier is dealt as maskable interrupt function, and "reti" is
used as return statement at function exit. In this interrupt function, its return value and argument must be
"void". All using registers in a function are saved at function entry and restored at exit.

___regbank(<number>)

The function specified with this function qualifier is dealt as maskable interrupt function, and "reti" is
used as return statement at function exit. In this interrupt function, its return value and argument must be
"void". A register bank is automatically changed by <number>, in this interrupt function. And the register
XIX, XIY and XIZ are saved and restored.

The register bank number which is able to specifies at <number> is either of -1 to 3.
When a function for which __regbank(-1) is specified is called, register bank do NOT change, and
register are not saved and restored.

Table 3-1 Interrupt function

__interrupt __regbank(<number>) __regbank(-1)

using registers in the register XI1X, XIY the register do
how to saved / . .
restored register interrupt function and XIZ are NOT

are saved/restored saved/restored saved/restored
bank switching - X -

Part 3 C Language Specifications

__cdecl

The function specified with this function qualifier is dealt as cdecl function. All arguments of cdecl
function are passed by stack. The arguments are recognized from right side, and pushd it on the stack.
The return value is stored to register "XHL". The return value which size is bigger than 4 byte is passed
by stack.

adecl
The function specified with this function qualifier is dealt as adecl function. All arguments of adecl
function are passed by register. The arguments are recognized from left side. However, the argument
which size is bigger than 2 byte is passed by stack.
The register to be used is as follows.
1st argument : WA (2 byte or less), XWA (4 byte)
2nd argument : BC (2 byte or less), XBC (4 byte)
3rd argument : DE (2 byte or less), XDE (4 byte)
4th or after argument : Using stack. Arguments are pushed from left side.
The return value is stored to register "XHL". The return value of adecl function is not able to specify
floating point number or structure variable or union variable. Moreover, it cannot be defined as variable
arguments.

inline
The function specified with this function qualifier is dealt as inline function. The compiler embeds the
actual function in the place where the __inline function is called, and reduces the function call overhead.
When using inline function, because of the actual function may be embedded at two or more places, the
code size may become large.
In the following case, a warning message is output and inline expansion is not performed.

Functions defined by variable arguments
Functions called without being defined
Recursive functions

__pic
The function specified with this function qualifier is dealt as PIC function (Position Independent Code).
For details, see Section 3.13, "PIC Specifications".

3.2.2 Memory Qualifier

A memory qualifier specifies a displacement for a variable, constant (const object), or pointer. Three
types of displacement are available that __tiny, nearand __far.

Variables and constants

m_tiny

8 bit area definition (‘address 0x0 — Oxff)
m __ near

16 bit area definition (address 0x0 — Oxffff)
[far

24 bit area definition (address 0x0 — Oxffffff)

14

Chapter 3 Toshiba Extended Specifications

__tiny cannot be specified as a constant (const object).

Pointer
The type of a pointer that stores the address value of a variable is unsigned long. The pointer itself can
be allocated to tiny area, near area, or far area like a variable.

3.2.3 Other Qualifier

I/0 Qualifier
1/0 qualifier specifies an absoluted address for which 1/O are allocated.

|<type specifier> __ io(<address>) <variable name>;

The variables specified with this qualifier is dealt as I/O variables. An absolute address with which a
I/0 variables is allocated is specified as <address>, the address can be specified in the range of 0x0 to
OxFfFfff.

1/0 variables have the same attributes as variables for which volatile is specified. An initializer cannot
be specified for an 1/0 variable. Moreover, it cannot qualify with const to 1/0O variable.

PID Qualifier
PID qualifier specifies a PID(Position Independent Data) variable.

|<type specifier> __ pid <variable name>;

The variable specified with this qualifier is dealt as PID variable. For details, see Section 3.14, "PID
Specifications".

3.3 #pragma Directives

3.3.1 Function type

#pragma cdecl
#pragma adecl

These directives set the default function type to cdecl or adecl. These directives are useful for function
declaration and function definition.

The effective range of this #pragma directive is, until just before the next #pragma cdecl/adecl
directive appear from a function declaration or a function definition immediately after specifying these
directives. If the next #pragma cdecl/adecl directive do not appear, it is valid until the end of the file.

3.3.2 Displacement

#pragma section <section-type>

#pragma section <section-type> <section-name>

#pragma section <section-type> <section-name> <address>
#pragma section <section-type> <section-name> <displacement>

15

Part 3 C Language Specifications

These directives change the section name for the specified <section-type> to <section-name>. You can
also use <address>/<displacement> to specify the location in which the section will be allocated.
You cannot specify <address>/<displacement> simultaneously.

If you specify only <section-type> without specifying <section-name>, all displacement settings for
the specified section will be reset to the default state. For <section-type>, specify data, area, const, code,
or io.

If <section-type> is i0, you cannot specify <address>/<displacement>.

You cannot use an assembler reserved word for <section-name>. The <section-name> must be a name
that complies with the identifier description rules for the assembly language.

You can specify a value in the range from 0x0 to Oxffffff for <address>.

You can specify tiny, near , or far for <displacement>. However, when <section-type> is const or code,
tiny cannot be specified.

The effective range of this #pragma directive is, until just before the next #pragma section directive for
the same <section-type> appear from a function definition or a variable definition immediately after
specifying these directives. If the next #pragma section directive for the same <section-type> do not
appear, it is valid until the end of the file.

This directives is invalid to external variable declaration(extern) other than code section.

3.33 Extern Directive

#pragma extern <displacement>

This directive specifies the displacement of variable which declarated external variable. You can
specify tiny, near , or far for <displacement>.

The effective range of this #pragma directive is, until the next #pragma extern directive appear from an

external variable definition immediately after specifying this directives.

3.34 10

#pragma io <variable-name> <address>

This directive specifies a variable as an 1/0 variable and assigns it a specified address. You must
specify <variable-name> that is not yet defined or declared.
For <address>, you can specify a value in the range from 0x0 to Oxffffff.

3.3.5 Disable Interrupt Directive

#pragma disinterrupt ([<level>]) <function-name> [, <function-name>...]

This directive disables interrupts in the specified function. Specifically, it inserts a disable interrupt
instruction immediately after the function call (before allocating a stack area and saving registers) and

16

Chapter 3 Toshiba Extended Specifications

inserts an enable interrupt instruction immediately before the function returns (after restoring registers
and releasing the stack area).

For <level>, specify the interrupt level. The interrupt level is specified the number from 0 to 7. If
<level> is omitted, it means that <level> is defined as 1. "'()" cannot be omitted.

For <function-name>, specify the name of the function. You can also specify the name of an interrupt
function besides the name of an usual function. You can specify more than one function name by
delimiting them with commas in a single line. Multiple declaration of the same name function cannot be
made by a different interrupt levels.

This directive must appear before the definition of the function.

3.3.6 Structure Packing Directive

#pragma pack([<alignment-byte>])

This directive specifies the alignment value of member of structure as <alignment-byte>. The
alignment value can be specified the number 1 or 2. If <alignment-byte> is omitted, it means the default
alignment value.

The effective range of this #pragma directive is, until just before the next #pragma pack() directive
appear from a structure definition immediately after specifying these directives. If the next #pragma
pack() directive do not appear, it is valid until the end of the file.

3.3.7 Restriction of Warning Output Directive

#pragma warningoff [<warning-number>, <warning-number>, ...]
#pragma endwarningoff [<warning-number>, <warning-number>, ...]

These directive restrict the output of the specified warning number.

The effective range of these #pragma directive is, until just before #pragma endwarningoff directive to
the specified warning number appear from immediately after specifying #pragma warningoff directive as
same number. If the #pragma endwarningoff directive do not appear, it is valid until the end of the file. If
<warning-number> is omitted, it means the all warning number are specified.

These directive are valid only to warning which the parser(thcl.exe) outputs. The following warning
that the code generator outputs cannot be restricted.

THC2-Warning-556
THC2-Warning-634
THC2-Warning-635

<Notice>

On the nature of the warning, THC1-Warning-632 which the parser outputs is outputted, after scanning
to the end of a file. For this reason, in order to restrict this warning, please do not specify "#pragma
endwarningoff 632" corresponding to "#pragma warningoff 632."

17

Part 3 C Language Specifications

3.3.8 PID Directive
#pragma pid_<on | off>

This directive specifies a variable as PID(Position Independent Data). This directive valid to variable
definition, and invalid to external variable declaration.

The effective range of this #pragma directive is, until just before #pragma pid_off directive appear
from variable definition immediately after specifying #pragma pid_on directive. If the #pragma pid_off
directive do not appear, it is valid until the end of the file. For details, see Section 3.14, "PID
Specifications".

3.4 Options

The options equivalent for Toshiba Extended Specifications are as follows.
The effective range of optional feature is the whole file which specified the option, because of the
options are specified to a file. For details of each option, see Chapter 5, "Option Descriptions".

Table 3-2 The Options equivalent for Toshiba Extended Specifications
Toshiba Extended Specifications Option
-Xc
-Xr
-Za <section-name>[, <displacement>]
-Zc <section-name>[, <displacement>]
-Zd <section-name>[, <displacement>]
-Zt <section-name>[, <displacement>]
-ZA <displacement>
-ZC <displacement>
-ZD <displacement>
-ZT <displacement>

Function Type

Displacement

Structure and Union Packing -Xp<1|2>
Change Method for Processing Shift

. -Xsc
Operation
Change the type of the enumeration

-Xec

constant
Deter Integration of Stack Freeing -Xns

35 Default Status

3.5.1 Address and Displacement

When an address is specified for an 1/O variable or section, the following displacement is
automatically used.

Table 3-3 Address and Displacement

Address Displacement
0x0 - Oxff tiny
0x100 - Oxffff near
0x10000 - Oxffffff far

3.5.2 Pointer Displacement

The displacement of pointer is far. The size of pointer is unsigned 4 byte.

18

javascript:goWordLink(%22equivalent%22)
javascript:goWordLink(%22for%22)
javascript:goWordLink(%22equivalent%22)
javascript:goWordLink(%22for%22)

Chapter 3 Toshiba Extended Specifications

3.5.3 Section Name and Displacement

If you do not explicitly specify the location in which a function or variable will be allocated, it will be
output to a predefined section according its type.

The following shows relationship among the type of a function or variable and the name and
displacement of the predefined section to which the function or variable is output. The default sections
are shaded in the table.

Table 3-4 Section Name and Displacement

Section Type Section Name Displacement
t data tiny
data n_data near
f data far
t area tiny
area n_area near
f area far
n_const near
const =
f_const far
code n_code near
f_code far
io io_variable-name specify by Address

3.6 Alignment

The default start alignments and allocation alignments for data, area, and const sections are 2 byte,
respectively. And the default start alignments and allocation alignments for code and io sections are 1
byte, respectively.

Moreover, the stack alignment is 2 byte, an 1 byte argument is pushed on the stack after extended to 2
byte.

3.7 Shift Operations

TLCS-900 family C compiler has two kinds of processing methods of the shift operation.

The shift counter of a shift operation has constraint by default. The constraint is that low 4 bits of shift
counter become effective, when shifting a variable of 16 bits or less type (char, short or int). When
shifting a variable of long type, the low 5 bits of shift counter become effective.

For example, when an operation "val << 0x12"is calculated using the char type variable "val”, it
processes as "val << 0x02" because of low 4 bits are effective.

The shift counter is able to lose constraint by specifing -Xsc option. For details of this option, see
Chapter 5, "Option Descriptions".

3.8 Intrinsic Functions

With the TLCS-900 family C compiler, the following intrinsic functions are provided.
When you use intrinsic functions, include <stdlib.h>.

19

Part 3 C Language Specifications

Table 3-5 Intrinsic function

Intrinsic function name | Operation Processing contents
void DI(); !ssues mterrupt prohibit DI

instruction
void EI(); Issues interrupt El

authorization instruction
Issues interrupt
authorization instruction
with interrupt level
(<level> is until 7 from 1)

void EI900(<level>); El <level>

<Notice>
The interrupt level is 0, when ___EI() is specified.
If __DI(),__EI(), or __EI900(<level>) is described at the head of a function, DI or El is output after

the entrance processing of function(stack processing). Similarly, if __DI(), __EI(), or
__EI900(<level>) is described at the end of a function, DI or El is output before the exit processing of

function(stack processing).

3.9 Inline Assembly

With the TLCS-900 family C compiler, it is possible to describe assembly language directly intoa C
language sourece file. This function is called inline assembly.
The inline assembly formats is as following.

__ASM(<string-constant> [,<string-constant>...]);
__asm(<string-constant> [,<string-constant>...]);

<Example>
void * word_memset(void * s, int c, size_t n)
__ASM('Id BC,(XSP+10) ; n');
__ASM('Id XHL,(XSP+4) ; s');
__ASM(*'cp BC,0™);
}
3.9.1 __ASM()

The compiler performs register allocation on the assumption that all registers are saved by across inline
assembly __ ASM().

39.2 _ _asm()

The compiler performs register allocation on the assumption that all registers except XIZ is destroyed
by across inline assembly __asm(). The HL registers is the saved register across a function call.

3.10 Register Pseudo Variable

With the TLCS-900 family C compiler, the register pseudo variable is provided to be able to directly
operate the registers in the C source program. There are a general register pseudo variable and a control
register pseudo variable in the register pseudo variable.

20

Chapter 3 Toshiba Extended Specifications

With register pseudo variables, the name has two underscores (__) added to the beginning of the
actual register name, and this is allocated to the actual register. Register pseudo variable names must be
in upper case letters.

The register pseudo variable has the following restrictions.

It is not possible to use the address operator "&" for register pseudo variables.
It is not possible to use as an argument of function.
It is not possible to do substitute processing to global register pseudo variables.
__SF, __ZF,and __VF are possible to use only comparison with an integer constant.
__CFis possible to use the following processing.
® Comparison with an integer constant.
@ Assignment integer constant (Oor1)to _ CF.
® Assignment __ CF to a bit field of 1-bit width.
m The control register pseudo variables are possible to use only the operand of simple assignment
operator (contain the left operand) or comparison operator. At that case, it is necessary to typecast to
each type of control register pseudo variable.

<Notice>

When using register pseudo variables, make sure that register pseudo variables do not interfere with
the register which compiler uses in the middle of evaluation of expression. When using register pseudo
variables, avoid using it with a complicated arithmetic expression, and surely check the register value in
the assembly source files which output with -XF option.

3.10.1 General Register Pseudo Variables
The general register pseudo variables are as follows.

Table 3-6 General Register Pseudo Variable

Register Pseudo Variable Name Type Contents
__XWA, XBC,__XDE, _XHL, unsigned long 32 bit register
_ XIX, XY, XlIZ, __XSP

__WA,__BC,__DE,__HL, unsigned int 16 bit register
X, 1Y, 1Z, 'SP

W, A B, C, D, E _ H L unsigned char 8 hit register
__SF, ZF, VF, CF unsigned int flag register

3.10.2 Control Register Pseudo Variables

There are Micro DMA control register, normal stack pointer, and interrupt nesting counter in the
control register pseudo variables. The usable registers vary according to CPU types. For details are as
following tables.

Table 3-7 Control Register Pseudo Variable for TLCS-900 series(-Nb0)

Register Pseudo Variable Name Type Contents
__DMASO, DMASL, DMAS2, DMASS, unsigned long micro DMA control
__DMADO, _DMAD1, _DMAD2, __ DMAD3 register
~_DMACO, DMAC1, DMAC2, DMAC3 unsigned int

__DMAMO, __DMAM1, _ DMAM2, DMAM3 unsigned char

__NSP unsigned int normal stack pointer
__ XNSP unsigned long

21

Part 3 C Language Specifications

Table 3-8 Control Register Pseudo Variable
for TLCS-900/L series and TLCS-900/L1 seriese(-Nb1

Register Pseudo Variable Name Type Contents

__DMASO, DMAS1, DMAS2, DMAS3, unsigned long micro DMA control

~_ DMADO, DMAD1, DMAD2, DMAD3 register

__DMACO, DMAC1, DMAC2, DMAC3 unsigned int

~_DMAMO, DMAM1, DMAM2, DMAMS3 unsigned char

__INTNEST unsigned int interrupt nesting counter
Table 3-9 Control Register Pseudo Variable for TLCS-900/H series(-Nb2)

Register Pseudo Variable Name Type Contents

__DMASO, DMASL, DMAS2, DMASS, unsigned long micro DMA control

__DMADO, DMAD1, DMAD2, DMAD3 register

~_DMACO, DMAC1, DMAC2, DMAC3 unsigned int

~_ DMAMO, DMAM1, DMAM2, DMAM3 unsigned char

__INTNEST unsigned int interrupt nesting counter
Table 3-10 Control Register Pseudo Variable for TLCS-900/H1 series(-Nb3)

Register Pseudo Variable Name Type Contents

__DMASO, DMAS1, DMAS2, DMAS3, unsigned long micro DMA control

__DMAS4, DMAS5, _ DMAS6, DMASY7, register

__DMADO, __DMAD1, __DMAD2, __DMADS3
__DMAD4, DMADS5, DMADS6, DMAD7?
__DMACO, _DMACL, _DMAC2, DMAC3 unsigned int
~ DMAC4, DMAC5, __DMAC6, DMACY
__DMAMO, __ DMAM1, __DMAM2, _ DMAM3 unsigned char
__DMAM4, DMAM5, DMAMS6, DMAM7

__INTNEST unsigned int interrupt nesting counter

3.11 Pre-defined Macros

Pre-defined macros added uniquely to the TLCS-900 family C compiler are as follows. These macros
are defined at a value when the conditions are established. When the conditions are not established, these
macros are not defined.

Table 3-11 List of Pre-defined Macros

Macro name Condition
__TOSHIBA__ TOSHIBA Compiler
_ 900 TLCS-900 family C compiler

3.12 Non-ANSI Specifications

TLCS-900 family C compiler outputs object code which conform to ANSI, when -A option specified.
If -A option is not specified, compiler utilizes the machine instruction effectively and outputs object
code with sufficient object efficiency.

3.12.1 Integral Promotion

In ANSI standard, there is a rule called "integral promotion". When the integral type which is smaller
than int type is used in an expression, the type convert to int type no explicitly shown in this rule. On the
other hand, TLCS-900 family C compiler carry out an operation using with 8 bit registers, no convertion
of integral promotion. It realizes making code size small.

If you want to operate with integral promotion in ANSI standard, -A option specified.

22

Chapter 3 Toshiba Extended Specifications

<Example>
extern int intvall;
extern char charval2, charval3;

void func()

intvall = charval2 + charval3;

}

/* The case of -A option is not specify
public _func
_func:
Id A, (_charval2) ; no convertion of integral promotion
add A, (_charval3) ; no convertion of integral promotion,
; direct expression

exts WA
Id (Cintvall),WA
ret

*/

/* The case of -A option is specify (ANSI standard)
public _func

_func:
Id C,(_charval3)
exts BC ; convert to int type
Id A,(_charval2)
exts WA ; convert to int type
add WA,BC
Id (Cintvall),WA
ret

*/

<Caution>

When -A option is not specify, addition of char type output result of char type, after that, the result of
char type is converted to int type and assign to a result. Because of this, when the result value is out of
range of char type, it does not get an expected result. In such a case, please typecast the type.

3.12.2 Arithmetric Conversion of Multiplication and Division

In ANSI standard, operands in different types are converted to the largest size in an expression. It is
also applied to multiplication and division. On the other hand, TLCS-900 family C compiler calculates
without carrying out a type conversion by utilizing of the multiplication and division machine instruction.
Therefore, code size can be made small.

Specify -A option to process the arithmetric conversion of multiplication and division by ANSI

conformity.
<Example 1>
extern long longvall;
extern int intval2, intval3;

void func()

longvall = intval2 * intval3;

}

/* When -A option is not specified
public _func

_Func:
id WA, Cintval?2)

23

Part 3 C Language Specifications

muls XWA, (_intval3)
1d (_longvall) ,XWA ; direct assignment,
; don’t process arithmetric conversion
ret
*/

/* When -A option is specified (ANSI standard)
public _func

_func:
id WA, C_intval2)
muls XWA, Cintval3)
exts XWA ; the arithmetric conversion
1d (_longvall),XWA
ret

*/

<Caution>

When -A option is not specify, the result value assign to a long type variable without carrying out the
arithmetric conversion. Because of this, when the result value is out of range of int type, it does not get an
expected result.

<Example 2>

unsigned long vall;
unsigned short val2;
unsigned short val3;

void func2()
{

vall = 0x7000000;

val2 = 0x200;

val3 = vall % val2;

/* when -A is not specified, val3 becomes indeterminate */

}
/* When -A option is not specified
_Ffunc2:
1d XWA , 0x7000000
1d (vall) ,XWA
Idw (_val2),0x200
1d XWA, (_vall)
div XWA, (_val2)
; overflow occurs, XWA becomes indeterminate value
Id WA, QWA
1d (val3),WA
ret
*/
<Caution>

When -A option is not specify, mnemonic "div"' may be used for division and remainder, in order to
make code size small.
Because of this, it does not get an expected result, when a quotient overflows by division is performed.

3.12.3 Numerical Number

In ANSI standard, the numerical values which can be treated as an int type (the range of -32768 to
32767) are treated as the signed int type. On the other hand, in TLCS-900 family C compiler, the
numerical values which can be treated as a signed char type are treated as the signed char type. It is also
applied to unsigned char type.

Specify -A option to treat the value of the range of -32768 to 32767 as the signed int type.

24

Chapter 3 Toshiba Extended Specifications

<Caution>
When -A option is not specify, the value of the range of 128 to 255 are treated as a unsigned char type.
Because of this, when these numerical values invert, it does not get an result of ANSI standard.

128 = Ox7T
| |

Specify -A option or typecast signed int type to get the value "~128 = Oxff7f".

3.13 PIC Specifications

PIC is the abbreviation for Position Independent Code, it is the code which is able to execute at
arbitrary location.

Register for PIC

When using PIC function, "XIX" register is used as the base register. Therefore, "XIX" register can not
be used for any uses other than the base register.

A initial location address of PIC is stored in "XIX" register.

Section Name
The section name in which PIC function is stored is "pic_code".

Table 3-12 Section Name of PIC Function
Section name Target

pic_code PIC Function

Moving PIC Function

PIC function can be moved on memory while the program is executing, and it can also execute at
destination as it is. When moving PIC function, whole "pic_code" section must be moved, and the
program which moves the "pic_code" section is needed.

PIC Function Pointer

Since the offset value is held, PIC function pointer can be moved on memory while the program is
executing.

In this case, in order to realize NULL pointer, it is necessary to set up "pic_base" section.

"pic_base" section specifies as code section of 1 byte or more. Moreover, "pic_base" section must be
specified by a link command file so that it may allocate just before "pic_code" section.

The pointer to PIC function can be initialized only by a constant or an address of PIC function. And
operation of PIC function pointer and normal function pointer is not made.

Library for PIC
The library for PIC is provided only runtime library. The standard library function can not use.

|c900pic.lib

PIC Caution

m PIC function can not be specified with inline function(__inline) to the same function.

m In the section which specified absolute address by #pragma section code directive, a specification of
__pic qualifier become invalid.

25

Part 3 C Language Specifications

3.14 PID Specifications

PID is the abbreviation for Position Independent Data, it is the data which can be accessed in same
code without being dependent in any location on a memory.

Register for PID

When using PID variables, "XIY" register is used as the base register. Therefore, "XIY" register can
not be used for any uses other than the base register.

A initial location address of PID is stored in "XIY" register.

Section Name
The section name in which PID variable is stored serves as the following sections according to the kind
of variable. The PID variable can not be allocated into any sections other than these section names.

Table 3-13 Section Categorization of PID Variable

Section name Items Subject to Categorization
pid_area Data for which an initial specifier has not been specified
pid_data Data for which an initial specifier has been specified
pic_data Data for which rewrite is not performed

Moving PID

PID variables can be moved on memory while the program is executing, and it can also access PID
variable at destination as it is. When moving PID variable, whole "pid_area" and "pid_data" sections
must be moved, and the program which moves the "pid_area" and "pid_data" sections is needed.

PID Caution

m Between #pragma pid_on and #pragma pid_off, change to area, data and const sections by #pragma
section directives cannot be performed.

m In the section which specified absolute address by #pragma section directives, a specification of
corresponding __ pid qualifier become invalid.

26

Part 4 Generating Execution Programs
from the Command Line

Chapter 4 Compiler Driver Overview

Chapter 4 Compiler Driver Overview

The tools necessary for building an execution format program are all executed using a compiler driver
(hereafter called a driver). As a result, execution of processes including compiling, assembling, and
linking of a program from the command line is easy. With the driver, based on things like the specified
option or input file suffix, activation of the compiler, assembler, etc. is controlled and output files are
generated. When use the compiler or the assembler, rather than directly activating it, use each tool by
using the driver.

Following are the four types of tools controlled by the driver.
® Compiler
® Macro Preprocessor
® Assembler
® Linker

The syntax for using the compiler driver is as follows.
cc900 [<options>] <files>

<options> shows the combination of options used by the driver. For detailed information on the
options that can be specified with this compiler, see Chapter 5, "Option Descriptions".

<files> shows the files that are subject to compiling, assembling, and linking. The file extensions that
are recognized by the driver as input files are as follows.

Table 4-1 Input File Types

Suffix File Type

.c C language source file

i Compiler preprocessor output file
.mac Macro preprocessor source file
.asm Assembler source file

rel Relocatable object file

dib Library file

Acf Link command file

Also, the files that are generated as a result of the aforementioned input files being processed by a
compiler, assembler, or linker are as follows.

Table 4-2 Output File Types

Suffix File Type

i Compiler preprocessor output file
.asm Assembler source file

rel Relocatable object file

.med Macro preprocessor list file

st Assembler list file

.map Map file

.abs Absolute object file

29

Part 4 Generating Execution Programs from the Command Line

Chapter 5 Option Descriptions

| -# Display the tool that activates the link process from compiling

[Description Format]
|-#

[Explanation]

m During the time from compiling to linking, the tools called by the compiler driver are displayed in the
command line. Also, things such as the options transferred to each tool are displayed.

m With this option, the processes from compiling to linking are simply displayed, and actual compiling,
assembling, and linking processes are not performed.

[Example]
Specify as noted hereafter.

|cc900 -Nb1 -g file.c -#

| -A Compile in accordance with ANSI specification

[Description Format]
[-A

[Explanation]

m |t compiles in accordance with ANSI standard.
If -A option does not specify, the integral promotion and the arithmetic conversion for multiplication
and division which are defined in ANSI standard are not performed.

[Example]
Specify as noted hereafter.

|cc900 -Nb1 -A file.c

| -D Define the preprocessor macro

[Description Format]
|—D <identifier>[=<substitution element>]

[Explanation]
m The preprocessing directive #define has the same effect as when written at the beginning of a source
program.
m It is not possible to specify following cases.
® \When there is a blank character between <ldentifier> and =
® \When there is a blank character between = and <Replacement Text>
m When only an <identifier> is specified, " 1 " will be specified in the <substitution element> part.

30

Chapter 5 Option Descriptions

Table 5-1 The Meaning of Option in the Source File

Option specified Meaning in the Source File
-D<identifier>=<substitution element> #define <identifier> <substitution element>
-D<identifier> #tdefine <identifier> 1

[Example]

For example, for the option specification noted hereafter,

| cc900 -Nb1 -DDEBUG -DBUFFER_MAX=256 file.c

when the following contents are described at the beginning of the source file, the same meaning results.

#define DEBUG 1
#define BUFFER_MAX 256

I -E Output preprocessor processing results to standard output

[Description Format]

|-E

[Explanation]

m Outputs the results of the C source file processed by the preprocessor to standard output.

m When multiple files are specified for input, the processing results of all files are output to standard
output.

m When -E option is specified, only the preprocessor is activated. Because of this, compiling,
assembling, and linking are not performed.

m -P option is a related option.

[Example]
Specify as noted hereafter.

|cc900 -Nb1 -E filel.c

I -F Specify the value which fill a blank area

[Description Format]

|-F<value>

[Explanation]

m Fill a blank area in the output section with the specified value.

m Specify <Value> using a 2-byte constant.

m Fill a blank area in order of the upper byte and lower byte of the <Value>.

m When the size of the blank area is odd byte, the last 1 byte is initialized by the upper byte of the
<Value>.

m It is only memory areas for which ' | ' attribute is specified with the memory definition instruction of
the link command file. Note that when the memory attribute specification is omitted, ' | * attribute is
added by default.

[Example]
Specify as noted hereafter.

31

Part 4 Generating Execution Programs from the Command Line

| cc900 -Nb1 -FOXFfff filel.c

| -1 Specify Search Path for Include Files

[Description Format]
|-1<Path>

[Explanation]

m Specifies the search path for the include files.

m In <Path>, it is possible to specify either an absolute path or a relative path, but this cannot be omitted.

m When multiple <Path> are specified with -I option, searching is done in the sequence in which they
were specified.

[Example]
Specify as noted hereafter.

| cc900 -Nb1 -I..\user\original\file.c

| -J Recognize the kanji code included in a source file

[Description Format]
[-J

[Explanation]
m Recognizes the kanji code included in a source file.

[Additional Note]
Do not use this option for English version.

| -L Specify a search path for input file to the linker

[Description Format]
|-L<Path Name> |

[Explanation]
m Specifies a search path for input files to the linker such as relocatable object files (.rel) or library files

(.lib).

m In <Path Name>, it is possible to specify either an absolute path or a relative path, but this cannot be
omitted.

m When a relative path is specified in <Path Name>, it is used as a relative path from linker executing
directory.

m The file is searched in order of the following directories.
(1) The current directory.
(2) The directory specified with -L option (when specified more than once, the paths are
searched in the order specified).
(3) The lib directory under the directory specified in the environment variable THOME900.

32

Chapter 5 Option Descriptions

[Example]
Specify as noted hereafter.

¢c900 -Nb1 -L\usr\local\work filel.c file2.rel
cc900 -Nb1 -L..\work\ filel.c file2.rel

I -Mi No Processing Macro Preprocessor

[Description Format]
[-Mi

[Explanation]
m Control the process so that Macro Preprocessor is not activated.

[Example]
In the following specification, filel.mac is processed in order of Assembler and Linker, but not by Macro
Preprocessor.

| cc900 -Nb1 -Mi filel.mac

I -Nb Select CPU Type

[Description Format]
|-Nb[<CPU Type>]

[Explanation]

m Specifies CPU type of TLCS-900 family.
m <CPU Type> is omitted, it means that <CPU Type> is defined as 0.
m This option is omitted, it means that -NbQ is specified.
m <CPU Type> are as follows.
Table 5-2 CPU Type
CPU Type Function
0 TLCS-900 series
1 TLCS-900/L series, TLCS-900/L1 series
2 TLCS-900/H series
3 TLCS-900/H1 series
[Example]

In use of CPU of TLCS-900/L1 series, specify as noted hereafter.

| cc900 -Nb1 file.c

I -0 Perform Optimization

[Description Format]
|-O[<Optimization Level>]

33

Part 4 Generating Execution Programs from the Command Line

[Explanation]

m The level of the optimization which a compiler performs is specified for the numerical value of 0, 1, 2,
or 3 to <Optimization Level>. The larger the number, the greater the optimization that the compiler
performs, and the <Optimization Level> numerical value also includes optimization lower than that.

m When <Optimization Level> or this option is not specified, the compiler regards this as optimization
level 0 having been specified.

m The optimization types performed with each optimization level are as follows. For detailed

information on each optimization, see Chapter 6, "Optimizations".
Table 5-3 Optimization

Level Function
0 Minimum optimization
1 Basic block optimization
2 Optimization of more than basic block
3 Maximum optimization

[Example]
Specify as noted hereafter.

| cc900 -Nb1 -03 filel.c

At this time, file.c is compiled at optimization level 3, and the optimization levels 1 and 2 optimizations
are also done.

| -P Execute only the preprocessor

[Description Format]
[-P

[Explanation]

m Outputs to a file the results of a source program processed by compiler preprocessing.

m Creates a file with the source file suffix changed to .i, and outputs the preprocessor execution results.
The file name to which results are output can be changed using the -o option.

m When -P option is specified, only compiler preprocessing is performed. Therefore, compiling,
assembling, and linking are not performed.

[Example]
Specify as noted hereafter.

|cc900 -Nb1 -P filel.c

| -S Create assembly language source program

[Description Format]
[-S |

[Explanation]
m Compiles a C source files or processes a macro preprocessor source file with macro preprocessor, and
creates an assembly language source program.

34

Chapter 5 Option Descriptions

m Because only compile processing or macro preprocess processing is performed, assembling and

linking are not performed.

[Example]
Specify as noted hereafter.

|cc900 -Nb1 - filel.c

|-u

Disable the specified preprocessor macro definition

[Description Format]

|-U<identifier>

[Explanation]

m The preprocessing directive #undef has the same effect as when written at the beginning of a source

program.

m When specified at the same time as -D, the option described later is enabled.
This option does not have an effect on macros defined by the preprocessing directive #define in the

source program.

Table 5-4 The Meaning of Option in the Source Program

Option specified

Meaning in the Source Program

-U<identifier>

#undef<identifier>

[Example]
Specify as noted hereafter,

| cc900 -Nb1 -UDEBUG filel.c file2.c

the option specification noted above has the same effect as when

| #undef DEBUG

is described at the beginning of filel.c and file2.c.

|-v

Output version information

[Description Format]

[-V

[Explanation]

m Outputs version information to standard output.

m This option cannot be included in files for which -f option is specified.

[Example]
Specify as noted hereafter.

| cc900 -Nb1 -V

35

Part 4 Generating Execution Programs from the Command Line

|-w

Transfer option to specified tool

[Description Format]
| -W<Sub-option>,<Option>[,<Option>...]

[Explanation]
m This option transfers specified options to specific tools such as compiler, assembler, linker, or Macro
Preprocessor specified using <Sub-option>. The types of <Sub-options> are as follows.

Table5-5 Sub-options
<Sub-option> Tool
Parser (for C compiler)
Code Generator (for C compiler)
Assembler
Linker
Macro Preprocessor

S|—|o |vdo

Normally, for options specified to the compiler driver, the options are allocated to tools such as the
compiler, assembler, linker, or Macro Preprocessor by the judgment of the driver, so this option is not
used.

[Example]
When specified as follows, the driver transfers -O0 option to assembler. This has deterred optimization of
assembler.

| cc900 -Nb1 -Wa,-00 file.c

| -XA, -XC, -XD Change the Section Alignment

[Description Format]
-XA<Alignment>
-XC<Alignment>
-XD<Alignment>

[Explanation]
m Changes the alignment of area, const, or data section. This option is effective to start location of
section and allocation alignment.

Table5-6 Subject of Change for Each Option

Option Subject of Change Default Alignment
-XA area section 2 byte
-XC const section 2 byte
-XD data section 2 byte

m <Alignment> specifies 1 or 2.

[Example]
Specify as noted hereafter, when the alignment of area section and data section become 1 byte.

|cc900 -Nb1 -XA1 -XD1 file.c

36

Chapter 5 Option Descriptions

I -XE Handles \ in assembler source files as a character

[Description Format]
|-XE

[Explanation]

m Handles the escape character " \ " included in assembler source files as a character rather than as an
escape sequence start symbol.

m When the input file is an assembler source file, the driver activates assembler. When escape
characters are included in this assembler source file, specify this option.

m When performing compiling, assembling, or linking from a C language source file, the driver
automatically transfers this option to assembler, so the user does not need to pay special attention to
this issue.

[Example]
For exmample, when the escape character " \ " is included in assembler source files, specify as follows.

| cc900 -Nb1 -XE file.asm

Note that unless an escape sequence is described in an invalid position, compiler is able to process
correctly, so it is not necessary to specify this option.

I -XF Leave an assembly language source program

[Description Format]
[-XF |

[Explanation]

m Leaves an assembly language source program created at the midway state of compiling, assembling,
and linking without deleting.

m When this option is not specified, an assembly language source program in the middle of compile
processing is deleted.

m -Soption is a similar option. -S option does not execute assembling and linking processing.

[Example]
Specify as noted hereafter.

| cc900 -Nb1 -XF file.c

I -XS Output the code by size optimization

[Description Format]
[-XS

[Explanation]
m Output the code that object size becomes small. Although the memory utilization improves, execution
speed may deteriorate.

37

Part 4 Generating Execution Programs from the Command Line

[Example]
Specify as noted hereafter.

|cc900 -Nb1 -XS file.c

| -Xaa, -Xac, -Xad Create the section for 1 byte variables

[Description Format]
-Xaa
-Xac
-Xad

[Explanation]
m Create area, const, or data section for 1 byte variables. The 1 byte variable is packed the section of the
following section name.

Table5-7 Subject of Change for Each Option

Option Target Section Default Section Name
Displacement
far f_area_alignl
-Xaa area section near n_area_alignl
tiny t area_alignl
. far f_const_alignl
-Xac const section -
near n_const_alignl
far f_data_alignl
-Xad data section near n_data_alignl
tiny t data_alignl

m The alignment of the section for 1 byte variable is 1 byte. The section The start location alignment of
section and each data alignment in section is specified 1 byte.
m Change the default displacement by -ZA, -ZC or -ZD option.

[Example]
Specify as noted hereafter, 1 byte variable as which the initializer is not specified is packed as
f_area_alignl section.

| ¢c900 -Nb1 -Xaa file.c

| -Xc Specify the function type to cdecl

[Description Format]
|-Xc

[Explanation]

m Specify the function type to cdecl.

m This option has same effect as specifying __cdecl to each function of a file or writting "#pragma
cdecl” at the beginning of a source file.

38

Chapter 5 Option Descriptions

m If -Xc or -Xr options is not specified, the default function type is cdecl.

[Example]
Specify as noted hereafter.

| cc900 -Nb1 -Xc file.c

I -Xec Change the type of the enumeration constant

[Description Format]
|-Xec

[Explanation]
m Determines the type of enumeration constant to the scope of enumerator values. The type of
enumeration constant is selected in following order.

Table 5-8 Enumeration Constant Type Sequence

Value Range Type of Enumeration Constant
0 - 255 unsigned char

-128 - 4127 signed char

0 - 32767 unsigned int

-32768 - +32767 signed int

m [f the value is out of range listed above, an error is outputted.
m This option cannot be specified with -A option at the same time.

[Example]
Specify as noted hereafter.

| cc900 -Nb1 -Xec file.c

I -Xns Deter Integration of Stack Freeing

[Description Format]
[-Xns

[Explanation]
m Deter the optimization which stack freeing collectively. Specifying this option helps to increase RAM
efficiency. However code efficiency and execution speed may deteriorate.

[Example]
Specify as noted hereafter.

| ¢c900 -Nb1 -Xns file.c

39

Part 4 Generating Execution Programs from the Command Line

| -Xp Packing the structure

[Description Format]

| -Xp<Alignment>

[Explanation]
m Packing the structure, and change the alignment of structure member.
m <Alignment> specifies 1 or 2.

[Example]
Specify as noted hereafter, the alignment of structure member become 1 byte.

|cc900 -Nb1 -Xr file.c

| -Xr Specify the function type to adecl

[Description Format]

[-Xr

[Explanation]

m Specify the function type to adecl.

m This option has same effect as specifying __adecl to each function of a file or writting "#pragma
adecl" at the beginning of a source file.
If -Xc or -Xr options is not specified, the default function type is cdecl.

m This option invalid to the standard library.

[Example]
Specify as noted hereafter.

|cc900 -Nb1 -Xr file.c

| -Xsc Change the processing method of shift operation

[Description Format]

[-Xsc

[Explanation]

m When the number of bits to shift is larger than the bit width of the variable shifted, the operation
result of an arithmetic shift to the left is set to 0, and the case of the operation result of an arithmetic
shift to the right becomes the value fill used with the sign bit about all the bits.

[Example]
Specify as noted hereafter.

| ¢c900 -Nb1 -Xsc file.c

40

Chapter 5 Option Descriptions

I -Xub Handle bit field members as unsigned

[Description Format]
[-Xub |

[Explanation]

m Handles the bit field member which is declared without adding a type specifier "signed™ or "unsigned"
as "unsigned".

m If this option is not specified, the bit field member which is declared without adding a type specfier
"signed" or "unsigned" are handled as "signed".

[Example]
Specify as noted hereafter.

| cc900 -Nb1 -Xub file.c

I -Xuc Handle the char type as unsigned char type

[Description Format]
[-Xuc

[Explanation]

m Handles the char type which declared without adding a type specifier "signed"” or "unsigned" as
unsigned char type.

m [f this option is not specified, the char type which declared without adding a type specfier "signed" or
"unsigned" are handled as signed char type.

[Example]
For example, when compiling is done with -Xuc option added to the source file called

| char message[] = "Hello World!" |

then this is handled as:

|unsigned char message[] = "Hello World!" |

I -Xw Change the bit field allocation sequence

[Description Format]
[-Xw

[Explanation]
m Changes the bit field memory allocation sequence from the least significant bit(LSB).

[Example]
Specify as noted hereafter.

|cc900 -Nb1 -Xw filel.c

41

Part 4 Generating Execution Programs from the Command Line

-ZA, -ZC, -ZD, -ZT Change the default displacement

[Description Format]
-ZA <tiny|near]|far>
-ZC <near|far>

-ZD <tiny|near|far >
-ZT <near|far>

[Explanation]
m Changes the displacement of an area, const, data, or code section.

Table 5-9 Subject of Change for Each Option

Option Subject of Change
-ZA area section

-ZC const section

-ZD data section

-ZT code section

m Specifying displacement using #pragma command or function qualifier has higher priority than using
option, so when there is specification of displacement using #pragma directive or function qualifier in
source program, the specification using this option is disabled for parts that are subject to these.

[Example]
To make the displacement for area sections and data section to "tiny", specify as follows:

|cc900 -Nb1 -ZAtiny -ZDtiny file.c

| -Za, -Zc, -Zd, -Zt, -Zi Change the section name and the displacement

[Description Format]

-Za <section name> [,<tiny]near]far>]
-Zc <section name> [,<near|far>]

-Zd <section name> [,<tiny]|near]|far >]
-Zt <section name> [,<near|far>]

-Zi <section name>

[Explanation]
m Changes the section name and the default displacement of area, const, data, or code section. The io
section can change the section name only.

Table 5-10 Subject of Change for Each Option

Option Subject of Change
-Za area section

-ZC const section

-Zd data section

-7t code section

-Zi data section

m You cannot use an assembler reserved word for <section name>. The <section name> must be a name
that complies with the identifier description rules for the assembly language.
m When <displacement> is omitted, only the section name is changed.

42

Chapter 5 Option Descriptions

[Example]
When specified as follows, the name of area section included in filel.c is changed to "New_name", and
the section displacement is changed to "tiny".

| cc900 -Nb1l —Za New_name,tiny file.c

I -C Create a relocatable object

[Description Format]
[-c

[Explanation]

m Executes compiling and assembling and creates a relocatable object file (suffix .rel).

m Linking is not executed.

m When multiple source programs are specified, compiling and assembling for each are executed, and a
relocatable object file corresponding to each source program is created.

[Example]
Specify as noted hereafter.

| ¢c900 -Nb1l -c filel.c file2.c

I -e Create an error list file

[Description Format]
|-e<File Name>

[Explanation]

m The errors and the warnings found by each tool such as the compiler, assembler, and linker are
consolidated and output to a specified file.

m When Fatal Error occurs, an error list file cannot be created.

[Example]
Specify as noted hereafter.

| cc900 -Nb1 -e errlst.txt filel.c

I -f Read the file that describes the option to be used

[Description Format]
|-f <File Name> |

[Explanation]

m Describes in advance in a text file the option to be specified. By using the -f option to specify that file,
options are read automatically.

m |tis possible to describe options on multiple lines within a file which is specified as <file name>.

m -V and -f options cannot be written in a file which is specified as <file name>.

43

Part 4 Generating Execution Programs from the Command Line

[Example]
Specify as noted hereafter.

| cc900 -Nb1 - optionlist.txt filel.c file2.c

|-g

Outputs debugging information

[Description Format]

-9

[Explanation]
m Outputs debugging information to an object file.
m |tis possible to perform debugging by reading a created object to debugger.

[Example]
Specify as noted hereafter.

|cc900 -Nb1 -g filel.c file2.c

Create a list file

[Description Format]

| -1 <Sub-option>

[Explanation]

m Outputs each type of information to a list file. The type of information output to the list file is
specified using a sub-option. Multiple sub-options can be specified.

m List files are output with different extensions attached for each tool, and the contents also differ for
each list file. About the contents of the list file, refers the "TLCS-900 Assembler Reference".

m The relationship between each tool and output suffix is as noted below.

Table 5-11 Tools and Extensions

Tool Suffix
Assembler st
Linker .map
Macro Preprocessor .med

m Multiple sub-options can be specified.

Table 5-12 Sub-options and Contents

Sub-option Contents

None Outputs basic information to a list file.

a Outputs the link information of external variables
and local variables to a list file. (for Linker)

f<File Name> Outputs by adding a name to the list file.

S Outputs the link information of static identifier to a
map file (for Linker). It is necessary to specify -g
option at compiling.

X Outputs cross reference information to a list file.

44

Chapter 5 Option Descriptions

[Basic Information]
m Activated tool's path, environmental variable, linked file list, created list files, option list that contains
all created objects, and link command file contents

[Example]
Specify as noted hereafter, when the link information of the external variables and local variables output.

| ¢c900 -Nb1 -la file.c |

Specify as noted hereafter, when all link information output.

|cc900 -Nb1 -g -la -Is file2.c |

I -0 Specify an output file name

[Description Format]
|-o <File Name>

[Explanation]

m Specifies a output file name using <File Name>.

m When this option is not specified, the input file name with a changed suffix becomes the output file
name.

[Example]
For example, when specified as follows,

| ¢c900 -Nb1 -0 output.abs input.c

the name of the absolute object file is output as output.abs.

I -r Perform incremental linking

[Description Format]
[-r

[Explanation]

m For link processing, performs incremental linking.

m The output file is a relocatable object file.

m When this option is specified, specify -0 option at the same time and be sure to specify an output file
name.

[Example]
Specify as noted hereafter.

| cc900 -Nb1 -r -o outfile.rel filel.c file2.rel

45

Part 4 Generating Execution Programs from the Command Line

| -S Perform Macro Preprocessor Identifier definition

[Description Format]
| -s <ldentifier>[=<value>]

[Explanation]
m Defines <Value> to <ldentifier> used by Macro Preprocessor.
m This option has the same effect as when "variable" function of Macro Preprocessor is used.
m If <Value> is omitted, it means that <Value> is defined as 1.
m It is not possible to specify following cases.
® \When the <Value> is not an integer
® \When there is a blank character between <ldentifier> and =
® \When there is a blank character between = and <Value>

[Example]
Specify as noted hereafter.

| cc900 -Nb1 -sAAA=1 file.mac

| -u Ignore predefined macros

[Description Format]
| -u

[Explanation]
O lIgnores predefined macros the following.
__LINE__,__FILE__,__DATE__,__TIME__

[Example]
Specify as noted hereafter.

cc900 -Nb1 -u file.c

| -u Register undefined symbols to the symbol table

[Description Format]
| -u<Symbol>

[Explanation]

m Linker links specified <Symbol> forcibly.

m This option is used in order to force a modular link. For example, this is used to link a library function
that is not being used.

m This option can specify multiple.
Do not put blank character between -u and <Symbol>.

[Example]
When specified as follows,

46

Chapter 5 Option Descriptions

cc900 -Nbl —u_pow file.c

even if pow() function is not used within file.c, linker links pow() function from a standard library.

I -w Set the Warning Level

[Description Format]
| -w<Warning Level>

[Explanation]

m Specifies the warning level which output by compiler, assembler, or linker.

m <Warning Level> can be specified from 0 to 3, and warning is output so more strictly that the number
becomes large.

m When this option is omitted, regards as -w1 being specified.
When <Warning Level> is omitted, regarded as -w0 being specified. No warning is outputted at this
time.

[Example]
Specify as noted hereafter.

| cc900 -Nb1 -w3 file.c

47

Part 5 Optimizations

Chapter 6 Optimizations

IChapter 6 Optimizations

6.1 Optimizations by C compiler

TLCS-900 family C compiler performs optimizations in order to improve object efficiency. The
optimization level of compiler is controllable by specifying -O option. The optimization lever detail is as

follows.
Level O Minimum optimization
Level 1 Weak optimization
Level 2 Strong optimization
Level 3 Maximum optimization

For example, if -O2 option is specified, C compiler performs optimization to level 2. If -O3 option is
specified, all optimization are performed. C compiler applies the methods of all the optimization
explained by the following clause.

In addition, execution speed may improve by changing the description of a program other than the
optimization which the C compiler performs. For details, see Section 6.2, "Optimizations by User".

6.1.1 Assignment of Variables to Registers

Auto variables are assigned to registers regardless of the optimization level. Variables are assigned to
registers as much as possible to improve code efficiency and execution speed.

With the TLCS-900 family C compiler, even if a storage class for register is not specified in a source
program, the variable are assigned to a register if it is possible to assign.

When there are variables which are not used simultaneously, it may be assigned to a same register. It
makes efficient use of registers. For example, local variables i and j are assigned to registers.

void makeunit(int *mat)
{ int i, j;
for (i =0; i <4; i++) {
for (G = 0; j < 4; j+) {
it G =9D{
*(mat + 4 * 1 + J) = 1;
}
else {
*(mat + 4 * 1 + J) = 0;
}
}
}
bs

Since optimization of assignment to registers corresponds to source level debugging, the user can
debug at source level without worring about thie optimization.

6.1.2 Integrated Stack Release

This processing is performed regardless of the level of optimization.When cdecl functions, which pass
arguments via the stack, are used consecutively (see __cdecl in3.2.1"
Function Qualifier"), the arguments are released from the stack all at once.

51

Part5 Optimizations

Usually, functions are called using the following procedure:

1. Arguments and return address are pushed on to the stack.
2. The function is called.
3. The pushed arguments are popped from the stack (stack release).

The stack releasing, the number of bytes accumulated on the stack as argument is added to the stack
pointer.

When function call is continuing, stack release all at once improve code efficiency and execution speed,
compared with stack release for every function call. When you deter this optimization, specify -Xns
option.

6.1.3 Minimum Optimization

The following optimizations are performed.
® Meaningless instructions elimination
® Change to high-functional or shorter instructions.

6.1.4 Branch Optimizations

Unnecessary branch instructions are deleted by branch optimizations. As a result of this optimizing,
there are lines which are not executed in the source program. Note that a break point cannot be specified
in lines which are not executed at source-level debugging. The technique of branch optimizations is as
following:

Switch statements
When there are six or more case statements, and the interval of labels is continuous or narrow, a jump
table is generated. This reduces conditional branch and improves speed.

Deletion of redundant branch instructions

Branch instructions used to jump to the next instruction are deleted. Such instructions may be
generated due to other optimization (such as the deletion of unnecessary instructions). Redundant labels
resulting from optimization are also deleted.

Deletion of codes which are not executed

Instructions which are not controlled from the program flow are deleted. For example, codes following
an unconditional branch are not executed, so they are deleted. Redundant branch and labels generated as
a result are also deleted.

Deletion of instruction to branch to function exit

When the branch destination by a branch instruction was made into the exit of a function, the function
exit processing is performed in the location. Thereby, it may become processing more nearly high speed
than branch. This optimization is not perfomed if -XS option is specified (code size has a high priority at
code generation).

6.1.5 Unnecessary Instructions Elimination

Unnecessary instructions are deleted by this optimization. That is, definition instruction which set
value to unused variables are deleted.

In the example below, if auto variable i is not used anywhere else, line "i = 1; " is unnecessary, so it is
not coded. A break point cannot be set on this line by the source-level debugger.

52

Chapter 6 Optimizations

void func(void)

i _
int i;
i =1; /* This line is unneccessary, so it is deleted. */
return;

}

6.1.6 Copy Propagation

Copy propagation is performed by optimization level over the narrow range or the whole function.
Copy propagation means the processing which reuse variables that become same value by copying or
assignment between variables and reduces the variable in subsequent expression.

Variables are reduced as follows:

m Propagation of value obtained by copying variable
m Propagation of assigned constant value

Variables propagation:
X =Y; >>> X
u X *vy;

c
I n
X
*
g

Constant values propagation:

x = 1;: >>> X = 1;
y = 2; y = 2;
Z =X +Yy; z = 3;
X += y; X = 3;

If the condition for a conditional branch is constant-constant comparison as a result of copy
propagation, the conditional branch is either deleted or changed to an unconditional branch.

Copy propagation may change variables used in the source program to constants or replace them.
Therefore, variables in the source program cannot be used at source-level debugging, or the order in
which an expression is evaluated may change. Note this at source-level debugging. In order to deter the
optimization to a variable, specify a volatile qualifier to a variable.

6.1.7 Common Sub-expression Elimination

This process is performed by optimization level over the narrow range or the whole function.
Common sub-expression elimination means that if there is sub-expression which is performed same
calculation in multiple expessions, the sub-expression is evaluated once to reduce the number of

operations.
X=4*10+j; >>> t0 =4 * i;
y=4*1i-j; X =10 + j;
y =10 - j;
/* t0 is a variable genarated by compiler, usually register is used.
*
/

The number of times of operation becomes fewer, so that there are many common sub-expressions.
However, the order in which an expression is evaluated may change, note this at source-level
debugging.

53

Part5 Optimizations

6.1.8 Loop Optimizations

The loop optimization is performed. The C compiler uses two methods for loop optimization as
following.

Move loop invariant
It is the processing which moves the invariant in a loop out of a loop, and reduces execution time of

loop.
for (i = 0; 1 < 10; i++) >>> t0O =b +c ;
a[i] = b + c; for (i = 0; 1 < 10; i++)
a[i] = t0;
/* t0 is a variable genarated by compiler, usually register is used. */

Optimization of induced variables
It is the processing which finds the changing variables a steady value in the loop, and simplifies
calculation. This method is used in address calculation for an array, for example.

for (i = 0; 1 < 10; i++) >>> t0 = &a[0];
a[i] = 0; for (i = 0; 1 < 10; i++) {
- *t0 = 0;
- ++t0;

/* t0 is a variable genarated by compiler, usually register is used. */

The variables in the source program cannot be used at source-level debugging, or the order in which an
expression is evaluated may change by these optimizations. Note this at source-level debugging.

6.2 Optimizations by User

In this section, we will explain optimization methods when describing source program and an option
used to improve the efficiency of object code without using -O option.

6.2.1 Optimizations when Describing Source Program
When describing source program, note the followin.

Passing arguments via register

When passing arguments to a function,using registers instead of the stack reduces the stack usage and
execution speed may improve. This is performed by setting the function type to adecl, that is specifying
-Xr option, or #pragma adecl directives, or function qualifier __adecl. (See 3.2.1 "Function Qualifier')

Using inline functions

Using inline functions reduces overhead caused by a function call and generates object code which
operates fast. At the same time, the code size may become large. To determine which functions should be
inline, check the software environment. This is perfomed by specifying the function qualifier __inline.

6.2.2 Optimizations by Option
There are the following options which improve object efficiency besides -O option.

Specification of Size Priority Code Generation
In generating code, This C compiler's priority is usually speed. Specifying -XS option, changes the
code-generation priority to size. However, optimization is easier for code where the priority is speed.

54

Chapter 6 Optimizations

Thus, the code size where the priority is speed may be smaller than for code where priority is size. To
reduce the size of the object, try to use different combinations with -XS and -O options.

55

Part 6 Standard Library Functions

Chapter 7 Standard Library Overview

IChapter 7 Standard Library Overview

TLCS-900 family C compiler shall generate objects that performed in the free standing environment.
The free standing environment means the environment performs the C programs operation system
support. This is defined in the Programming Language C(ISO/IEC 9899 : 1990) standard. In the free
standing environment, provided library functions are implementation-defined.

In this chapter, it explains the header files and the liblary functions provided by this compiler.

Header Files
The header files which this compiler offers are stored in the include directory in the install directory.

Library Files
The library functions which this compiler offers are stored as the library files in the lib directory in the
install directory.

59

Part 6 Standard Library Functions

Chapter 8 Header File

The header files of the standard library which this compiler offers are as follows.

Table 8-1 Standard Library Header File

Header File Name Header File Contents

assert.h assert

ctype.h Character type

errno.h Error processing

float.h Floating point type quantitative limit

limits.h General integer type quantitative limit
Standard numerical value mathematical

math.h .
function

setjmp.h Global jump

stdarg.h Variable count argument list

stddef.h Library type and macro

stdio.h Input/output

stdlib.h Utility function

string.h Character string operation

This library is not support <setjmp.h>.

60

Chapter 9 Library Function

I Chapter 9 Library Function

9.1 Standard Library Function List

The standard library functions which this compiler offers are as follows.

<assert.h>
function name function
assert() macro for program assert
<ctype.h>
function name function
isalnum() judge the character as alphabet or number
isalpha() judge the character as alphabet
iscntrl() judge the character as control character
isdigit() judge the character as decimal number
isgraph() judge the character as display characters except for blanks
islower() judge the character as lower case alphabet
isprint() judge the character as display characters
ispunct() judge the character as delimiter
isspace() judge the character as blank type characters
isupper() judge the character as upper case alphabet
isxdigit() judge the character as hexadecimal number
tolower() convert upper case alphabet to lower case
toupper() convert lower case alphabet to upper case
<Notice>

The standard library functions of <ctype.h> are offered even when it is macro besides a function.

When you use functions, define the macro name "__ CTYPE_FNC".

#define

__CTYPE_FNC
#include <ctype.h>

When you use macros, a character string is restricted to 256 bytes.

Although a function or a macro can be specified for every file, in order to avoid confusion, we

recommend you to use either.

61

Part 6 Standard Library Functions

<math.h>
function name function
acos() calculate the inverse arc cosine
asin() calculate the inverse arc sine
atan() calculate the inverse arc tangent
atan2() calculate the inverse arc tangent2
ceil() return the minimum integer that is not smaller than the
argument
cos() calculate the cosine
cosh() calculate the hyperbolic cosine
exp() calculate the exponential
fabs() calculate the floating-point absolute value
floor() return the largest integer value which does not exceed the
value of argument
fmod() calculate floating-point remainder
frexp() separete floating-point value into mantissa and exponent
Idexp() calculate a real number from mantissa and exponent
log() calculate natural logarithmic
log10() calculate common logarithmic
modf() separate floating-point value into integer part and factional
portion
pow() calculate the power
sin() calculate the sine
sinh() calculate the hyperbolic sine
sgrt() calculate the square root
tan() calculate the tangent
tanh() calculate the hyperbolic tangent
<stdarg.h>
function name function
va_arg() Return a value of actual argument from a variable
arguments list
va_end() End a handling of a variable argument list
va_start() Initialize a variable argument list
<Notice>

In the function with a variable argument, a float type is extended to a double type and a stack is loaded
with it. Therefore, a float type argument cannot be referred to correctly with va_arg() function. Please do

not use a float type for a variable argument.

<stdio.h>
function name function
sprintf() Write formatted data to a character string
sscanf() Read formatted data from a character string
vsprintf() Output argument list value to a character string buffer

62

Chapter 9 Library Function

<stdlib.h>
function name function
calloc() allocate memory dynamically and clear it
malloc() allocate memory dynamically
realloc() reallocate memory dynamically
free() deallocate memory
atof() convert character string to numerical value of double type
atoi() convert character string to integer value of int type
atol() convert character string to integer value of long type
strtod() convert character string to numerical value of double type
strtol() convert character string to integer value of signed long type
strtoul() convert character string to integer value of unsigned long
type
bsearch() bynary search in an array
gsort() sort an array
abs() calculate integer absolute value
div() calculate quotient and remainder
labs() calculate absolute value of long type integer
Idiv() calculate quotient and remainder by perfoming division
long type integer
srand() initialize the pseudo-randam number
rand() generate the pseudo-randam number
<string.h>
function name function
memchr() search character from memory area
memcmp() compare memory block
memcpy() copy memory block
memmove() move memory block
memset() set memory to specific value
strcat() concatenate 2 character strings
strchr() search location of character of character string
stremp() compare 2 charcter strings
strepy() copy character string
strespn() search a portion which does not contain character set from
character string
strlen() return character string length
strncat() concatenate n character
strncmp() compare n character
strnepy() copy n character
strpbrk() search character of charset from character string
strrchr() search location of character from character string
strspn() search a character set from character string
strstr() search location of part of character string
strtok() extract a next token from character string
<Notice>

To use a floating point number, it is necessary to define a global variable "errno".

9.2 Runtime Library List

The object which this compiler outputs calls the following runtime libraries.

63

Part 6 Standard Library Functions

Table 9-1 Runtime Library List

Runtime Function

Library Name

C9H_mulls multiplication operation of signed long

C9H_divls division operation of signed long

C9H_remlse remainder operation of signed long

C9H_mullu multiplication operation of unsigned long

C9H_divlu division operation of unsigned long

C9H_remlu remainder operation of unsigned long

_fneg_f negation operation of float

_fneg d negation operation of double

_fneg_x negation operation of long double

_fadd_f addition operation of float

_fadd d addition operation of double

_fadd x addition operation of long double

_fsub f subtraction operation of float

_fsub_d subtraction operation of double

_fsub_x subtraction operation of long double

_fmul_f multiplication operation of float

_fmul d multiplication operation of double

_fmul_x multiplication operation of long double

_fdiv_f division operation of float

_fdiv d division operation of double

_fdiv_x division operation of long double

_fld_ff assignment operation of float

_fld_fd conversion and assignment operation from double to float

_fld_fx conversion and assignment operation from long double to float

_fld_df conversion and assignment operation from float to double

_fld_dd assignment operation of double

_fld_dx conversion and assignment operation from long double to double

_fld_xf conversion and assignment operation from float to long double

_fld_xd conversion and assignment operation from double to long double

_fld_xx assignment operation of long double

_fld_If conversion and assignment operation from float to long

_fld Id conversion and assignment operation from double to long

_fld_Ix conversion and assignment operation from long double to long

_fld_ulf conversion and assignment operation from float to unsigned long

_fld_uld conversion and assignment operation from double to unsigned long

_fld_ulx conversion and assignment operation from long double to unsigned
long

_fld_fl conversion and assignment operation from long to float

_fid_dI conversion and assignment operation from long to double

_fld xI conversion and assignment operation from long to long double

_fld_ful conversion and assignment operation from unsigned long to float

_fld_dul conversion and assignment operation from unsigned long to double

_fld_xul conversion and assignment operation from unsigned long to long
double

_femp f comparison operation of float

_fcmp_d comparison operation of double

_fcmp_x comparison operation of long double

_femp_zf comparison operation of float and int

_fcmp_zd comparison operation of double and int

_fcmp_zx comparison operation of long double and int

<Notice>

Assembly language program should not define the identifier of the same name as these libraries.

64

Part / Error Message

Chapter 10 Error Message Format

IChapter 10 Error Message Format

10.1 Types of Error Messag es
There are the following three types of error message.

Warning
A warning is output when a compile result may become what a user does not mean. The compiler
outputs a warning, but compiling work continues, and output file is generated.

Error
An error is output when syntax that violates the rules is detected.

Fatal Error
A fatal error is output when some kind of serious problem occurs under compiling and it is no longer
possible to progress with source file compiling.

10.2 Error Message Format

Error messages take the following format:

|<Fi|ename> <Line Number> : <Tool>-<Type>-<Number> : <Message>

<Filename> This is the name of the file in which the error occurred. <filename> is not output
when the cause of an error is not related to a specific file.

<Line Number> This is the number of the line in which the error occurred. Usually, it outputs to an
error as which a filename is output.

<Tool> This is the name of the tool in which the error is occurred.
<Type> This is the error type.

Fatal

Error

Warning
<Number> This is the error number, described later.

Fatal : 0-99

Error : 200 - 499

Warning : 500 - 999

<Message> The message is a description of the error.

67

Part 7 Error Message

IChapter 11 Driver Error Message

11.1 Driver Fatal Error

<l/O Errors>
20: Can't open *'<filename>"*
The driver cannot open the specified file.

<Invocation Errors>

100: No source file found in invocation

No input source file was specified in the command.
103: ""<filename>"" files are the same

The same filename is specified more than once.
106: Missing parameter "'<option>""

A parameter which should be specified for an option is missing.
109: Unrecognized option "'<option>"'

An invalid option is specified.
111: Can’t nest a command file

The option list file is nested.
112: Not allowed character **<option>"'

The option parameter is not a numerical value.
113: Invalid subargument "'<option>"'

The method of specifying arguments necessary for options is not perfect.

114: Invalid argument "'<option>"'

There is an error in the method of specifying arguments necessary for options.

115: '-r' option requires '-0" option

You must specify a file output with the ‘-0’ option when specifying option ‘-r’.

116: Can’t execute ""<filename>"'

The program indicated with <filename> cannot be executed. Check that the execution
procedure is correct and that the correct installation directory is set in the environment

variable.

11.2 Driver Warning

520: The suffix not fit for output-file *<filename>""
There is an error in specified output file suffix.
521: Ignored option **<option>"*

The opposite option was specified. Priority is given to the option specified first.

522: Unknown suffix, ""<filename>"" used as ''<extension>"" file
Error in specified input file suffix "<extension>".

68

Chapter 12 C Compiler Error Message

IChapter 12 C Compiler Error Message

12.1 C Compiler Fatal Error

<Runtime errors>
100: Too many errors
The number of errors exceeded the compiler limit (30).

<File-related errors>

120: Cannot close file "'<filename>"'
The specified file cannot be closed.
121: Cannot open file "'<filename>""
The specified file cannot be opened.
122: Cannot open temporary file
An intermediate file during compiling cannot be generated.
123: Cannot seek "'<filename>"'

The specified file cannot be sought.
125: Problems with output file, probably out of disk space
An error occurred during file write. Available space in disk may not be enough.

<Compiler limits>
130: Compiler limit, out of space
The memory which the compiler allocated reached the limit. The compiler cannot be
allocated memory any more.

131: Compiler limit, too deep nesting of blocks
The number of nested blocks in the source program exceeded the compiler limit.
134: Compiler limit, too deep nesting of struct/union
The number of structure/union nesting levels exceeded the compiler limit.
136: Compiler limit, too many internal variables in ‘function’
The number variables or types exceeded the compiler limit.
137: Compiler limit, too many internal label
The number of internal variables exceeded the compiler limit because the function is too
large.
138: Yacc stack overflow

Compiling the source program cannot continue because the work area for analyzing the
source program is insufficient.

<Fatal errors due to memory insufficiency>
140: Out of memory
The area necessary for compiling cannot be obtained because system memory is not
sufficient.
142: Too large function for optimization in '<function_name>'
Memory for optimization cannot be obtained.

<Limits exceeded>
150: Too large string
The length of a character string exceeded the size of the compiler buffer.

69

Part 7 Error Message

151: Too large string for inline assemble
The character string specified in the inline assembly statement is too large.

<Other fatal errors>

160: Division by zero in '<function>"
161: Remainder by zero in *<function>"

Division by zero or remainder by zero is performed in the source program.
162: Memory control blocks destroyed

OS memory control blocks are destroyed.
163: Unexpected EOF in comment
The file ended before the end of a comment.

12.2 C Compiler Error

<Token errors>

200: Empty character constant
Null character constant was used as a character constant. A character constant must contain
one character which is enclosed by single quotation.

201: Illegal character '<Hexadecimal>" at column *<column>"
A character whose character code is hexadecimal appeared in the source file. The character
cannot be used.

202: lllegal digit '<character>" for base '<radix>'
A character whose character code is a Cardinal number(8 or 10 or 16) appeared in the
source file. The character cannot be used.

203: Illegal escape sequence
An escape sequence is used in other than a character constant or a string literal.

204: Illegal hex constants
No hexadecimal character is written after Ox or \x indicating the start of a hexadecimal
constant.

205: Newline in char constant

A newline character is input before the end of a character constant (before closing using
‘™). Lines cannot be changed within a character constant.

206: Newline in string
A newline character is input within a string literal.
207: Unexpected exponent character ‘<character>*

A character other than a sign or numerical value is written after character "e" or "E"
representing exponent character.

<Syntax errors>
210: Constant expected
A constant expression is required. For example, an expression other than a constant
expression is written instead of an array size for array declaration.

int a = 5;
int b[a]; /* incorrect */

70

Chapter 12 C Compiler Error Message

211:

212:

213:

215:

216:

lllegal break
A break statement is written in a statement other than a do, for, while, or switch iteration
statement.

Illegal continue
A continue statement is written in a statement other than a do, for, or while iteration
statement.

Initialization needs {} in '<identifier>"
An initializer for an array, structure, or union must be enclosed by braces {}.

int a[1]
int b[1]

1; /* incorrect */
{113}; /* correct */

Syntax error in ‘<token>'
A syntax error occurred at ‘<token>’.
Syntax error at or near column <column>
A syntax error occurred at or near the number of columns <column>.

<Declaration and definition errors>

221:

223:

224:

225:

226:

227:

Array of functions not allowed
An array of functions is not allowed. Nor can an array of void type be accepted. The
pointer type to the function may have been incorrectly declared. The following shows an
example of a pointer array to the function that returns the int type.

int (*f1[101)QO:
/* Correct: Pointer array to the function that returns
the int type */
int *f2[10]10;
/* Incorrect: Array of functions that return a pointer
to int */

Cannot initialize extern "<token>" in block-scoped
A variable declared together with storage-class specifier extern within a block is initialized.
Cannot use address of automatic variable as static initializer
An address of an object with automatic storage duration is used within an initializer to an
object with static storage duration.

void func(Q)
{

int i;
int *pl = &i; /* correct */
static int *p2 = &i; /* incorrect */

Duplicate signed/unsigned keywords

Both "signed™ and "unsigned" are used within one declaration.
Duplicate stroage class ‘<class>" specified

Two or more storage-classes are specified within one declaration.
Expected formal-parameter list

An argument list instead of a parameter list is used for function definition.

/* correct */ /* incorrect */
void func(int arg) void func(int)
{ {

71

Part 7 Error Message

228:

229:

230:

231:

232:

233:

235:

236:

237:

239:

240:

241:

243:

244

245:

246:

Function illegal in struct/union ‘<identifier>"
A function is declared as a structure/union member.

lllegal bit field type '<bit filed>"
Illegal bit field type (such as pointer or floating point type) is specified.

lllegal declaration '<storage class specifier>'
The specified storage-class specifier cannot be used.

lllegal function return type, cannot return array type
Array type is specified as function return value type. Pointer type to an array can be
specified as return value type.

Illegal function return type, cannot return function type
Function type is specified as function return value type. Pointer type to a function can be
specified as return value type.

Illegal initialization
Initialization specification is illegal.

lllegal type combination '<type specifier>"
Some type specifiers cannot be used within the same declaration.

Illegal void type '<identifier>"
An attempt was made to declare a void type variable. Declaration of pointer (incomplete
type) to a void type variable or void can only be used to declare a function without a return
value or to indicate no arguments for function declaration.

Illegal zero sized member ‘<member>*
Array without size (array with no subscript, or subscript is 0) is declared as a
structure/union member.

Negative subscript
A negative value is specified as the size in an array type declaration.

Non-address expression
An address is required for an initialization expression. An error will occur in the examples
below:

int a;
int *b = a;

Non-constant initializer
The initializer is not a constant.

Null dimension
When defining a multi-dimensional array, other than at the first dimension, subscript values
must be defined.

Prototype must have parameter types ‘<function>*
When declaring a function prototype, argument types must be specified using parameter
type definition.

void funcl(int argl, int arg2); /* correct*/
void func2(argl, arg2); /* incorrect */

Too many initializers

Number of initializers larger than the number of objects to be initialized is specified.
Zero size bit field '<identifier>"

0 is specified as the width of a named bit field.

72

Chapter 12 C Compiler Error Message

<Undefined errors>

250:

251:

252:

253:

254:

256:

Illegal struct/union name for member . ‘<member>*
The left operand of a component selection operator is not structure or union type.
Illegal struct/union pointer name for member ->'<member>"
The left operand of a component selection operator is not a pointer to structure or union
type.
Undefined struct/union '<identifier>" of '<tag>"
A structure/union with a tag name <tag> is not defined, therefore, <identifier> cannot be
declared as a structure/union.
Undefined struct/union '<identifier>", left of '<operator>'
An undefined structure/union is used in the left operand expression of the component
selection operator ("->" or ".").
Unknown size '<identifier>"
Array without size was declared.
'<identifier>' undefined
An undefined identifier is used.

<Double definition errors>

260:

261:

262:

263:

264:

Duplicate case in switch '<value>"

The same value is used twice for case labels in one switch statement.
Duplicate default in switch

Two or more default labels are written in one switch statement.
Redeclaration of '<identifier>"

An attempt was made to define an already-defined <identifier>.
Redeclaration of struct/union/enum/tag '<tag>"

An attempt was made to declare the tag name <tag> that had already been used in the struct,

union, or enumeration declaration.

Redeclaration of struct/union member ‘<member>'
An attempt was made to declare members of the same name in the struct or union
declaration.

<Operand errors>

270:

271:

272:

273:

274:

Bad left/right operand '<operator>"
Operand type of the operator is illegal.
Illegal cast
An attempt was made to convert a type which cannot be converted. The type conversion in
the example below is not allowed.

int a;
struct st{ int al, bl; } sti;
stl = (struct st)a; /* incorrect */

Illegal indirection
Pointer operator "*" is used for a non-pointer value.
Illegal sizeof
The operand of sizeof operator must be either an object name or a type name.
Illegal struct/union type, use '->*
Component selection operator "." is used as a pointer to a member of a structure/union.

When specifying the member of a structure/union pointed to by a pointer, use operator "->".

73

Part 7 Error Message

275:

276:

277:

278:

Illegal struct/union pointer type, use . '
Component selection operator "." is used for a structure/union object. When specifying a
member of a structure/union object, use operator ".".
Illegal subscript
Operator "[]" is used for an object of other than array or pointer type.
Unacceptable operand of ‘&'
The operand of address operator "&" is illegal.
‘<member>" not member of struct/union

The member name <member> is not a struct or union member.

<Expression errors>

280:

281:

282:

283:

284:

285:

286:

288:

289:

291:

292:

293:

294:

295:

296:

298:

Cannot cast void to non-void
Void type cannot be cast to another type.
lllegal actual parameter '<value>'th of ‘<function>"
At a function call, an argument has an error. The number <value> represents the argument
number.
Illegal cast to array type
Obiject type is cast to array type.
lllegal cast to function type
Obiject type is cast to function type.
Illegal compare struct/union
Comparison between structures or unions is not allowed. Compare members of a structure
or union.
Illegal function
A function is called using an identifier which is not declared as function type, or an
expression which is not a pointer to a function.
lllegal index, non-integral
Value of an array subscript expression is not integer type.
Illegal operand '<operator>"
The operand is used incorrectly.
Illegal operator '<operator>" for struct/union
The structure or union cannot be operated on by the specified operator.
Incompatible types "<identifier>"
Operation on incompatible types is performed.
Invalid addition, pointer to pointer
Addition between pointer types is performed.
Invalid addition/subtraction, pointer to non-integral value
Addition or subtraction between pointer type and non-integer value is performed.
Invalid subtraction pointer from non-pointer
Attempt is made to subtract a pointer type value from a non-pointer type value.
Lvalue required '<operator>'
The left operand of the operator must be a left-side value.
Lvalue specifies const object
Const type object value is used as a left-side value. Operation to change a const type object
value is not allowed.
Non-integral in switch expression
The result of evaluating a switch expression is not an integer value.

74

Chapter 12 C Compiler Error Message

300: Void type in expression

A void expression is used in a control expression of the if, while, for, or do statement.
301: '<operator>' needs lvalue

The operand of the operator must be a left-side value.

<Preprocessor errors>

310: Cannot open #include file "*<filename>"*

The #include file <filename> cannot be found.
311: Illegal identifier '<identifier>" found in defined-operator

An unspecifiable <identifier> is used in the defined phrase of the #if or #elif statement.
313: Illegal macro name

An invalid identifier is specified as a macro name.
314: Illegal macro parameter ‘<parameter>"

An invalid character is specified as an argument in a function-type macro name definition.
316: lllegal #elif

The #elif is used incorrectly. The probable cause is that the corresponding #if, #ifdef, or
#ifndef is missing.

317: lllegal #else
The #else is used incorrectly. The probable cause is that the corresponding #if, #ifdef, or
#ifndef is missing.

318: Illegal #include filename
The file name specified in the #include command is illegal.
319: lllegal #line filename
The file name specified in directive #line is illegal.
320: Illegal #line number
The line number specified in directive #line is illegal.
322: Macro ‘<identifier>" redefined

Replacement contents differ in redefinition of the macro.
324: Too long token
The token name is excessively long.
325: Too many #else
Usage of #else is incorrect. You’ve already used #else in the corresponding to #if, #ifdef,
or #ifndef.
326: Unexpected EOF in macro ‘<identifier>*
An EOF code is found in the macro call.
327: Unexpected EOF in '<preprocessing directive>"
An EOF code is found befor the preprocessing directive corresponding to <preprocessing
directive> is described.

328: Unexpected ‘<preprocessing directive>*
The preprocessing directive corresponding to <preprocessing directive> is missing.
329: Unknown preprocessor command

A incorrect preprocessing directive was used. Check the spelling of preprocessing directive.
330: #elif following #else

The #elif command is written after the #else command.
331: #error '<message>"

The message <message> is output by #error command.

75

Part 7 Error Message

332:)" not found in "<operator>'
‘)’ corresponding to ‘(* is missing in preprocessing operator.

<Limits exceeded>
340: Too large bit field *<bit field>*
Number of bits larger than the standard number is specified at bit field declaration.
341: Too many characters in constant
A number of characters exceeding the size of int type are specified in the character constant.
342: Constant too big
Constant value exceeds the range in which a value can be expressed by the specified type.
343: Out of range for enum constant
Enumeration constant exceeds the range in which a value can be expressed.

<Compiler limits exceeded>
360: Compiler limit, too deep nesting of #if/#ifdef/#ifndef
The nesting level of #if, #ifdef, and #ifndef exceeded the compiler limit.

361: Compiler limit, too deep nesting of #include

The nesting level of # include exceeded the compiler limit.
362: Compiler limit, too large object in <memory_area> memory space

The object size exceeded the range which can be specified in <memory area>.
363: Compiler limit, too many declarations

The number of qualifiers exceeds the compiler limit.
364: Compiler limit, too many parameter

The number of arguments of a function exceeded the compiler limit.
365: Compiler limit, too many -1 options

The number of specifications of option -1 exceeded the compiler limit.
366: Compiler limit, too many -D options

The number of specifications of option -D exceeded the compiler limit.
367: Compiler limit, too many -U options

The number of specifications of option -U exceeded the compiler limit.

<Errors related to extension function>
370: Bad inline assemble construction
Syntax for inline assembly is illegal.
371: Duplicate function attribute
Two or more function qualifiers (eg, __cdecl) were specified within one declaration.

372: Illegal function call, function defined __interrupt or __regbank
__interrupt type function cannot be called from a C program.
373: Illegal function return type
__interrupt type function must be void.
374: Illegal parameter type lists
__interrupt type function cannot specify parameters.
375: Illegal pointer type, different function attribute
The pointer type which differ in function type is used.
385: Illegal function type for inline/builtin-function *<function>"

The specified function cannot be made into the inline function.

76

Chapter 12 C Compiler Error Message

<Others>
390: division/remainder by zero
Divisor 0 or remainder 0 occurred during evaluation of a constant expression.

<Errors of preprocessor>

400: Illegal pointer size
The pointer size specification is illegal.
401: Illegal displacement size
The displacement size specification is illegal.
402: Illegal section size
The section size specification is illegal.
403: lllegal assignment of pseudo register-variable ‘<register-name>"
The incorrect value is assigned to a pseudo register variable.
404: Duplicate memory size
Two or more displacement are included.
406: Cannot initialize to variable
An initial value cannot be specified for an io variable.
407: Cannot declare io variable in block-scoped

An io variable cannot be specified within a block.

408: Not support keyword ' <keyword>'
The specified extended reserved word is not supported.

410: Illegal pointer operation "<operation>', pointer is different attribute
The different pointer type are specified.

12.3 C Compiler Warning

The number in parenthesis which follows to error messages shows a warning level.

(1) Levell Normal warning (Default -w1)
(2) Level 2 Middle warning (-w2)
(3) Level 3 Detail warning (-w3)

In warning level 3, when a program is not exactly written, the warning message is output. The
description which may cause a mistake can be checked. Note what the message meaning says, because
the same message is shown with different levels according to circumstances.

<Warnings of option>
500: Duplicate option "<option>" (1)
The same option is specified twice or more.

501: Illegal option ‘<option>" (D)
Specification of the option is illegal. This option is ignored.

503: Option '<option>* requires an argument (1)
The parameter is not specified for the option which necessitates the parameter. This option
is ignored.

77

Part 7 Error Message

<Warnings of discarding data>

510: Floating-point overflow)]
A floating point operation exception such as overflow or underflow occurred during a
floating constant operation. The compiler continues the operation, regarding the operation
result as 0.0.

511: Out of range in hex escape sequence '<Hexadecimal_constant>" (1)
The number of digits in the hexadecimal escape sequence of a character string literal
exceeded 9 characters.

513: Too many initialize for array '<identifier>" Q)
The initializers more than the number of initializing objects are specified. The excess
initializers are ignored.

514: Type conversion, possible loss of data)]
Because of values of different base types were specified in one expression, the type of one
of them was converted. The data were discarded during type conversion.

515: Too long identifier, truncated to '<identifier>" (1)
The identifier was too long; characters following the 1023 character were discarded.
Untill 1023" charaters, the same characters may be regarded as the same identifier.

516: Integral overflow)]
The operation result exceeds the range which can be represented by integer.

517: Too big for character (1)
The internal code of the character constant exceeds the range which can be handled.

<Warnings of undefine>
521: Undefined return type in '<function>' ?3)
A function which is not declared or defined is used. The compiler continues the operation,
regarding the function as one which returns an int type value.

522: Unnamed struct/union as parameter ?3)
A tag name is not declared for a structure/union is used in an argument for a function call.
523: Undefined struct/union '<tag-name>' 3
An undefined structure/union is used. They are compiled as a structure/union without
members.

<Warnings of unnecessary declaration/description>
530: Duplicate type qualifier @
The same qualifier (const or volatile) was used twice or more.
531: No identifier declared (2)
A identifier is not declared, so it was ignored.

532: Untagged enum/struct/union declared no symbols 2
A identifier of a enumeration/structure/union without tag is not declared, so this declaration
is ignored.
534: '<type>' may be used on integral types only Q)
Signed or unsigned is used for a type other than integer type. The specification is ignored.
536: No use memory size (1)

It is not able to specify the displacement or 1/O to a automatic variables.
537: Label '<label>'defined but not used in function (3)
A label which is not used is included.

78

Chapter 12 C Compiler Error Message

538:

Statement not reached 1)
A statement which is not executed is included.

<Descriptions which might cause errors>

540:

541:

542:

543:

544:

545:

546:

547:

548:

549:

550:

Assignment in conditional expression 3
The result of an assignment expression is used as a conditional expression.
For example, this warning is output in the following case:

| if (result = func(l))

Case constant '<value>' too big for the type of switch expression (1)
Case label value exceeded the range in which values can be represented by the conditional
expression type in the switch statement.

Comma operator in array index expression 3
Comma operator is used in an array subscript expression.

Constant in conditional expression (3)
A constant is specified in an if or while conditional expression. This warning is just for
information.

Const object '<object>" should be initialized 3
A const object is not initialized.

lllegal assignment, const/volatile qualifier mismatch (1)
A pointer to an object which was declared as const or volatile is assigned to a pointer to an
object which was not declared as const or volatile.

Illegal conversion, integral type mismatch 3
During conversion of two integer values, data are lost. For example, this warning is output
in the following case:

short v_short;
long v_long;
v_short = v_long;

lllegal conversion, floating type mismatch 3
During conversion of two floating point values, data are lost. For example, this warning is
output in the following case:

float v_float;
double v_double;
v_float = v_double;

Illegal pointer operation '<operator>", array’s subscript mismatch (1)
A pointer operation to an array which have different subscript is performed.
lllegal pointer operation '<operator>', indirection level mismatch (1)
The level of indirect reference is not consist.

char **pptr;
char *ptr;
ptr = pptr; /* warning */

Illegal pointer operation '<operator>", type mismatch (1)
Pointer to different types is used in a expression.

79

Part 7 Error Message

char *cp;
int *ip;
cp = ip; /* warning */
551: Logical operation "<operator>"' on address of string constant (3)

A logical operation using a string literal address is performed. For example, this warning is
output in the following example:

char *str = “Hello”;
if (str == “Hello”)
552: Meaningless statement 2
Meaningless statement is written.
553: No return value in '<function>')
A return statement is not written in a function which is declared for a return value.
556: '<identifier>" used before set in '<function>' (3)
A variable which has had no value set is referenced.
557: Redeclaration of '<identifier>', array’s subscript mismatch (1)
Different array elements are declared.
558: Multiple comparison operator in expression 3)

Comparison operations are written twice or more.
559: Out of range for array (3)
Accessing is executed out of the range for the specified array.

<Warnings to specifications>
560: Bad storage class ‘<identifier>* QD
A storage-class specifier which cannot be used is specified.

561: Cannot return value for void function QD
A return statement is written within a function declared as void, which does not return a
value.

563: Storage-class specifier after type (3)

A Storage-class specifier is declared after a type specifier in the declaration.
565: Redeclaration of '<function>", class mismatch (3)

A function is redefined in different storage-class.

<Warnings for prototype>

571: Illegal declaration with formal argument list Q
Arguments are not declared for definition of a function which was declared as using
arguments. In subsequent function calls, the function is regarded as not using arguments.

572: Illegal assignment of function’s pointer, different parameter lists (1)
A pointer to a function with different argument type or number is assigned to another
function pointer.

573: lllegal declaration without formal argument list (1)
Parameters are declared in the definition of a function which was declared as not using
arguments (void). After the definition, the function is regarded as having arguments
defined.

574: Illegal function call '<function>, declared with void (1)
The argument are specified at calling function which is declared without argument(void).

80

Chapter 12 C Compiler Error Message

577:

578:

579:

580:

581:

582:

583:

584:

585:

586:

587:

lllegal function call '<function>', too few actual parameters (1)
The number of arguments specified for a function call is smaller than the number of
parameters declared at function declaration or definition.
Illegal function call '<function>*, too many actual parameters (D)
The number of arguments specified for a function call is larger than the number of
parameters declared at function declaration or definition.
Illegal function call '<function>', type conversion Q
The size of argument type differ from that of parameter type. The type of actual arguments
is converted into that of parameters.
Illegal prototype in '<number >'th parameter (1)
The same function is declared twice or more but the parameter list types do not match.
Different declaration parameter list from definition (1)
The type of the parameter list at function declaration differs from the type of the parameter
list at function definition. The parameter list at function definition is used.
No function prototype '<function>' (2)
A function whose prototype is not declared is called.
Parameter type mismatch, ‘<value>'th parameter of '<function>' (1)
An argument of a different type was passed instead of the parameter specified at function
definition.
Parameter number mismatch in prototype (D)
The same function is declared twice or more. The number of parameters is different for
each declaration.
Uses old-style declarator '<function>" 3
Function declaration and definition are old-style.
No use in formal-parameter list '<identifier>' (1)
When function definition is old-style, a type which is not used is defined.
lllegal function’s pointer type, different return type Q)
The function pointer is used erroneously because the type of return value is incorrect.

<Warnings of preprocessor>

591:

592:

596:

597:

598:

599:

Illegal/missing macro name (1)
An invalid macro name is specified or the macro name is not specified.
lllegal macro call *<macro name>', mismatched number of parameters (1)
The number of arguments in a function format macro call does not match the number of
arguments in the macro definition.
Illegal ##, beginning of a macro definition 1)
The macro definition replacement list starts with a ## operator.
Illegal ##, ending of a macro definition (1)
The macro definition replacement list ends with a ## operator.
Macro formal parameter expected after # 1)
The operand after a # operator in a macro definition must be a parameter name.
Unexpected character after directive, ignored (1)
An invalid character string is specified after a preprocessing directive. The character string
is ignored.

81

Part 7 Error Message

<Warnings of pragma>

610:

611:

612:

615:

616:

618:

619:

<Others>
620:

621:

622:

623:
624:

626:

631:

632:

634:

#pragma keyword expected, '<token>’ found, (1)
<token> after #pragma was not identified as a command. This directive is ignored.
#pragma [on \ off] expected (1)
#pragma directive needs an on or off parameter, but the parameter was not specified or the
specified parameter was not identified. This directive is ignored.
#pragma [1\ 2\ 4] expected (1)
#pragma directive needs a 1, 2, or 4 parameter, but the specified parameter was not
identified. This directive is ignored.
Unexpected #pragma token ‘<token>' Q)
An unnecessary token was found in the argument list of #pragma directive. The remaining
part of this directive is ignored.
Cannot use #pragma disinterrupt for inline/builtin-function (1)
#pragma disinterrupt is specified for a inline function. Since this function expands code
directly, disinterrupt cannot be specified for it. This #pragma directive will be ignored.
Unknown #pragma (1)
#pragma directive not supported by the compiler is used. This directive is ignored.
Cannot use #pragma in initializing (D)
#pragma directive is used in the middle of initializing.

Cannot use function attribute '<identifier>' 1)
Specified function qualifier <identifier> cannot be specified. The function qualifier is
ignored.

Illegal escape sequence '<character>* (D)

An invalid character is specified for an escape sequence after the escape character. The
escape character is ignored.

Sizeof returns 0 1)

The size of the operand of the sizeof operator is 0.
Type definition in formal parameter list '<tag>" 1)
Type definition in formal parameter list (no tag) (D)

Structure/union/enumeration type is declared in a formal parameter list. This declaration is
regarded as an external declaration. If untagged structure/union/enumeration type was
declared, the tag name is indicated as "no tag".

**[* found outside of commnet (D)
"*[" is written outside a comment. For example, the warning is output in the following
case:

int */* comment */ptr;
After processing the above, the following is regarded as:
int *ptr;
‘/<character>' found inside of commnet (3)
"[*"and "/[" are found in a comment. This description is ignored.
Static function "<function>' not found (1)
A static function which has no entities is found. If a static function is declared, but not
defined, this warning is generated.
Too large function '<function_name>', optimize not performed 2
Several optimization cannot be performed because the function is too large.

82

Chapter 12 C Compiler Error Message

635: Too much register pseudovariable use, value may be invalid (1)
The value may be invalid because of the pseudo-variables are used too much.
636: lllegal value of assignment for pseudo register-variable '<function_name>' Q)

An invalid value is assigned to the pseudo-variable.

<Warnings of processor dependent extension function>

651: Illegal displacement size (D)

A displacement, which cannot be used, is specified.
652: Illegal section size (D)

A displacement which was not able to be used was specified for the section.
653: Illegal pointer operation '<operator>", pointer size mismatch (1)

The operation which doesn't suit the size of the pointer is performed.

83

APPENDIX

A ANSI Processing System Dependence Specifications

I A ANSI Processing System Dependence Specifications

This chapter describes C language implementation-defined behaviors set forth in ISO 9899 : 1990
ANSI.

The operation of the implementation-defined is an operation that depends on the processing system
characteristics of the operations relating to correct program structure elements and correct data, and it is
also an operation for which each processing system must be documented. Also, the processing system
runs in a specific translation environment under specific control options, translates programs for specific
execution environments, and is stipulated as a specific software collection that supports the execution of
functions for that execution environment.

The operation of the implementation-defined noted in this chapter is as follows, and the JIS item
number is shown in the detailed description of each item.

34 Byte

3.14 Object

5112 Translation phases
5121 Freestanding environment
51221 Program startup

5.1.2.3 Program execution

52.1 Character sets

52421 Sizes of integral types
52422 Characteristics of floating types

6.1.2.5 Types

6.1.3.1 Floating constants

6.1.3.4 Character constants

6.1.7 Header names

6.2.1.1 Characters and integers
6.2.1.2 Signed and unsigned integers
6.2.1.3 Floating and integral

6.2.1.4 Floating types

6.3.2.3 Structure and union members
6.3.3.4 The sizeof operator

6.3.4 Cast operators

6.3.5 Multiplicative operators
6.3.7 Bitwise shift operators

6.5.1 Storage class specifier
6.5.2.1 Structure specifier and union specifier
6.5.3 Type specifiers

6.8.1 Conditional inclusion

6.8.2 Source file inclusion

6.8.6 Pragma directive

6.8.8 Predefined macro names

87

APPENDIX

A.1 Definitions and Conventions

A1l [3.4 Byte]

ISO/ANSI C
A byte is composed of a contiguous sequence of bits, the number of which is implementation-defined.

TLCS-900 C operation
One byte consists of 8 bits.

A.1.2 [3.14 Object]

ISO/ANSI C
Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

TLCS-900 C operation
Explicitly specified. Please refer to "B Translation Limits".

A.2 Environment

A.2.1 [5.1.1.2 Translation phases]

ISO/ANSI C
Whether each nonempty sequence of white-space characters other than new-line is retained or replaced
by one space character is implementation-defined.

TLCS-900 C operation
Nonempty sequence of white-space characters other than new-line is replaced by one space character.

A.2.2 [5.1.2.1 Freestanding environment]

Explanation
In a freestanding environment in which C program execution may take place without any benefit of an
operating system.

ISO/ANSI C
The name and type of the function called at program startup are implementation-defined.

TLCS-900 C operation
The name of the function called at program startup is main, and type is user-defined.

ISO/ANSI C
Any library facilities available to a freestanding program are implementation-defined.

TLCS-900 C operation
Usable libraries are detailed in the Part 6 "Standard Library Functions".

88

A ANSI Processing System Dependence Specifications

ISO/ANSI C
The effect of program termination in a freestanding environment is implementation-defined.

TLCS-900 C operation
The processing at program termination is user-defined.

A.2.3 [5.1.2.2.1 Program startup]

ISO/ANSI C

If the value of argc is greater than zero, the array members argv[0] through argv[argc-1] inclusive
shall contain pointers to strings, which are given implementation-defined values by the host environment
prior to program startup.

TLCS-900 C operation
This is irrelevant to the TLCS-900, because it does not operate in the host environment.

A.2.4 [5.1.2.3 Program execution]

ISO/ANSI C
What constitutes an interactive device is implementation-defined.

TLCS-900 C operation
Interactive devices can be defined by the user.

Explanation
Interactive device : Refers to an input device such as the keyboard and an output device such as the
display unit.

ISO/ANSI C
More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

TLCS-900 C operation
Currently, abstract and actual semantics are not strictly corresponded to each other. For reasons of
optimization effect, abstract and actual semantics do not corresponded one for one.

A.25 [5.2.1 Character sets]

ISO/ANSI C
The values of the members of the execution character set are implementation-defined.

TLCS-900 C operation
The values of the members of the execution character set conform to ASCII code.

A.2.6 [5.2.4.2.1 Sizes of integral types]

ISO/ANSI C
Their implementation-defined values shall be equal or greater in magnitude (absolute value) to those
shown, with the same sign.

89

APPENDIX

number of bits for smallest object that is not a bit-field (byte)
CHAR_BIT 8

minimum value for an object of type signed char
SCHAR_MIN -127

maximum value for an object of type signed char
SCHAR_MAX +127

maximum value for an object of type unsigned char
UCHAR_MAX 255

minimum value for an object of type char
CHAR_MIN see below

maximum value for an object of type char
CHAR_MAX see below

maximum number of bytes in a multibyte character, for any supported locale
MB_LEN_MAX 1

minimum value for an object of type short int
SHRT_MIN -32767

maximum value for an object of type short int
SHRT_MAX +32767

maximum value for an object of type unsigned short int
USHRT_MAX 65535

minimum value for an object of type int
INT_MIN -32767

maximum value for an object of type int
INT_MAX +32767

maximum value for an object of type unsigned int
UINT_MAX 65535

minimum value for an object of type long int
LONG_MIN -2147483647

maximum value for an object of type long int
LONG_MAX +2147483647

maximum value for an object of type unsigned long int
ULONG_MAX 4294967295

If the value of an object of type char is treated as a signed integer when used in an expression, the
value of CHAR_MIN shall be the same as that of SCHAR_MIN and the value of CHAR_MAX
shall be the same as that of SCHAR_MAX. Otherwise, the value of CHAR_MIN shall be 0 and
the value of CHAR_MAX shall be the same as that of UXHAR_MAX. (See [6.1.2.5 Types])

TLCS-900 C operation

CHAR_BIT 8

SCHAR_MIN -128

SCHAR_MAX +127

UCHAR_MAX 255

CHAR_MIN -128 as default (0 with -Xub option)
CHAR_MAX +127 as default (255 with -Xub option)
MB_LEN_MAX 4

90

A ANSI Processing System Dependence Specifications

SHRT_MIN -32768
SHRT_MAX +32767
USHRT_MAX 65535
INT_MIN -32768
INT_MAX +32767
UINT_MAX 65535
LONG_MIN -2147483648
LONG_MAX +2147483647
ULONG_MAX 4294967295

A.2.7 [5.2.4.2.2 Characteristics of floating types]

ISO/ANSI C
The rounding mode for floating-point addition is characterized by the value of FLT_ROUNDS:
-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.
The values given in the following list shall be replaced by implementation-defined expressions that
shall be equal or greater in magnitude (absolute value) to those shown, with the same sign:
radix of exponent representation, b
FLT_RADIX 2
number of base-FLT_RADIX digits in the floating-point significand, p
FLT_MANT_DIG
DBL_MANT DIG
LDBL_MANT_DIG
number of decimal digits, g, such that any floating-point number with q decimal digits can be rounded

into a floating-point number with p radix b digits and back again without change to the g decimal

- 1 if b is a power of 10
digis, [(p-1) X logygb] + {5 oPu 2P

FLT DIG 6
DBL_DIG 10
LDBL_DIG 10

minimum negative integer such that FLT_RADIX raised to that power minus 1 is a normalized
floating-point number, €min

FLT_MIN_EXP

DBL_MIN_EXP

LDBL_MIN_EXP
minimum negative integer such that 10 raised to that power is in the range of normalized floating-

1
e
point numbers, [log; b min=
FLT MIN_10 EXP -37
DBL_MIN_10_EXP -37

LDBL_MIN_10 EXP -37

maximum integer such that FLT_RADIX raised to that power minus 1 is a representable finite
floating-point number, €max

91

APPENDIX

FLT _MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP
maximum integer such that 10 raised to that power is in the range of representable finite floating-point

numbers, [10gyo ((1-b™) X b"™)]

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10 EXP +37

The values given in the following list shall be replaced by implementation-defined expressions with
values that shall be greater than or equal to or those shown:

- e
maximum representable finite floating-point number, (1-b p) x b max

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

The values given in the following list shall be replaced by implementation-defined expressions with
values that shall be less than or equal to those shown:
the difference between 1 and the least value greater than 1 that is representable in the given floating-

1-
point type, Error! Bookmark not defined.Error! Bookmark not defined.b P

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9
minimum normalized positive floating-point number, Error! Bookmark not defined.Error!
Bookmark not defined b™" "
FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37
TLCS-900 C operation
FLT_ROUNDS
FLT_RADIX
FLT_MANT _DIG 24
DBL_MANT DIG 53
LDBL_MANT DIG 64
FLT_DIG 6
DBL_DIG 15
LDBL_DIG 18
FLT_MIN_EXP (-125)
DBL_MIN_EXP (-1021)
LDBL_MIN_EXP (-16381)
FLT MIN_10 EXP (-37)
DBL_MIN_10_EXP (-307)
LDBL_MIN_10 EXP (-4931)
FLT MAX_EXP (+128)
DBL_MAX_EXP (+1024)

92

A ANSI Processing System Dependence Specifications

LDBL_MAX_EXP
FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP
FLT _MAX
DBL_MAX
LDBL_MAX
FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON
FLT_MIN

DBL_MIN
LDBL_MIN

A.3 Language

A.3.1 [6.1.2.5 Types]

ISO/ANSI C

(+16384)

(+38)

(+308)

(+4932)
3.402823466e+38F
1.7976931348623157e+308
1.7976931348623157e+308
1.192092896e-07F
2.2204460492503131e-16
1.084202172485504434e-019L
1.175494351e-38F
2.2250738585072014e-308
2.2250738585072014e-308

An object declared as type char is large enough to store any member of the basic execution character
set. If a member of the required source character set enumerated in 5.2.1 is stored in a char object, its
value is guaranteed to be positive. If other quantities are stored in a char object, the behavior is
implementation-defined: the values are treated as either signed or nonnegative integers.

TLCS-900 C operation

The values are treated as signed integers.

A.3.2

ISO/ANSI C

[6.1.3.1 Floating constants]

If the scaled value is in the range of representable values (for its type) the result is either the nearest
representable value, or the larger or smaller representable value immediately adjacent to the nearest
representable value, chosen in an implementation-defined manner.

TLCS-900 C operation

The "nearest representable value" is returned.

Explanation

How the multiplication result of floating-point numbers is rounded is implementation-defined.

A.3.3

ISO/ANSI C

[6.1.3.4 Character constants]

An integer character constant is a sequence of one or more multibyte characters enclosed in single-
quotes, as in 'x' or ‘ab'. A wide character constant is the same, except prefixed by the letter L. With a few
exceptions detailed later, the elements of the sequence are any members of the source character set; they
are mapped in an implementation-defined manner to members of the execution character set.

93

APPENDIX

TLCS-900 C operation
Conforms to ASCII code. TLCS-900 family C compiler can not treat a wide character constant.

ISO/ANSI C
The value of an integer character constant containing more than one character, or containing a
character or escape sequence not represented in the basic execution character set, is implementation-

defined.

TLCS-900 C operation
Conforms to ASCII code. A character constant can hold to 4 bytes.

ISO/ANSI C
The value of a wide character constant containing more than one multibyte character, or containing a
multibyte character or escape sequence not represented in the extended execution character set, is

implementation-defined.

TLCS-900 C operation
TLCS-900 family C compiler can not treat a wide character constant.

A.3.4 [6.1.7 Header names]

ISO/ANSI C
The sequences in both forms of header names are mapped in an implementation-defined manner to

headers or external source file names as specified in 6.8.2.

TLCS-900 C operation
Refer to A.3.18 [6.8.2 Source file inclusion].

A.3.5 [6.2.1.1 Characters and integers]

ISO/ANSI C
Whether a "plain” char is treated as signed is implementation-defined.

TLCS-900 C operation
Treated as signed. It can change by -Xuc option.

A.3.6 [6.2.1.2 Signed and unsigned integers]

ISO/ANSI C

When a value with integral type is demoted to a signed integer with smaller size, or an unsigned
integer is converted to its corresponding signed integer, if the value cannot be represented the result is
implementation-defined.

TLCS-900 C operation
When the converted value cannot be represented, it is converted to an unsigned integer of the same size

as the signed integer, which is then sign-extended to obtain the result.

94

A ANSI Processing System Dependence Specifications

A.3.7 [6.2.1.3 Floating and integral]

ISO/ANSI C

When a value of integral type is converted to floating type, if the value being converted is in the range
of values that can be represented but cannot be represented exactly, the result is either the nearest higher
or nearest lower value, chosen in an implementation-defined manner.

TLCS-900 C operation
It is rounded up or down depending on the bit one bit below the effective significand part; it is raised
to a unit when 1 or discarded when 0. This process is performed by floating-point runtime library.

A.3.8 [6.2.1.4 Floating types]

ISO/ANSI C

When a double is demoted to float or along double to double or float, if the value being
converted is outside the range of values that can be represented, the behavior is undefined. If the value
being converted is in the range of values that can be represented but cannot be represented exactly, the
result is either the nearest higher or nearest lower value, chosen in an implementation-defined manner.

TLCS-900 C operation
Same as described in A.3.7 [6.2.1.3 Floating and integral].

A.3.9 [6.3.2.3 Structure and union members]

ISO/ANSI C

With one exception, if a member of a union object is accessed after a value has been stored in a
different member of the object, the behavior is implementation-defined. One special guarantee is made in
order to simplify the use of unions: If a union contains several structures that share a common initial
sequence, and if the union object currently contains one of these structures, it is permitted to inspect the
common initial part of any of them.

TLCS-900 C operation
In TLCS-900, the byte ordering in memory is little endian.

A.3.10 [6.3.3.4 The sizeof operator]

ISO/ANSI C
The value of the result is implementation-defined, and its type (an unsigned integral type) is size_t
defined in the <stddef.h> header.

TLCS-900 C operation
The size_tis an unsigned long type.

char 1
short 2
int 2
long 4
float 4
double 8

long double 10

95

APPENDIX

pointer 4

A.3.11 [6.3.4 Cast operators]

ISO/ANSI C

A pointer may be converted to an integral type. The size of integer required and the result are
implementation-defined.

An arbitrary integer may be converted to a pointer. The result is implementation-defined.

TLCS-900 C operation
A value of a pointer is treated as a unsigned long type. Moreover, if it is a value within the limits
which can be treated with unsigned long type, it is possible to use it which is converted to a pointer.

A.3.12 [6.3.5 Multiplicative operators]

ISO/ANSI C

If either operand is negative, whether the result of the / operator is the largest integer less than or equal
to the algebraic quotient or the smallest integer greater than or equal to the algebraic quotient is
implementation-defined, as is the sign of the result of the % operator.

TLCS-900 C operation

If either operand is negative, the result of the / operator is the smallest integer greater than or equal to
the algebraic quotient. The sign of the result of the % operator is

If a dividend of the % operator is negative value, the sign of the result is negative, the other is positive.

A.3.13 [6.3.7 Bitwise shift operators]

ISO/ANSI C

The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient of E1
divided by the quantity, 2 raised to the power E2. If E1 has a signed type and a negative value, the
resulting value is implementation-defined.

TLCS-900 C operation
If E1 is a negative value, the result of E1 >> E2 is that of an arithmetic shift-right operation. Namely,
the sign is retained.

A.3.14 [6.5.1 Storage-class specifiers]

ISO/ANSI C

A declaration of an identifier for an object with storage-class specifier register suggests that access to
the object be as fast as possible. The extent to which such suggestions are effective is implementation-
defined.

TLCS-900 C operation
Obijects declared using storage-class specifier register are treated in the same as those that are specified
with storage-class specifier auto.

96

A ANSI Processing System Dependence Specifications

A.3.15 [6.5.2.1 Structure and union members]

ISO/ANSI C
Whether the high-order bit position of a (possibly qualified) "plain™ int bit-field is treated as a sign bit
is implementation-defined.

TLCS-900 C operation
Treated as a sign bit.

ISO/ANSI C

An implementation may allocate any addressable storage unit large enough to hold a bit-field. If
enough space remains, a bit-field that immediately follows another bit-field in a structure shall be packed
into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that does not fit is put
into the next unit or overlaps adjacent units is implementation-defined. The order of allocation of bit-
fields within a unit (high-order to low-order or low-order to high-order) is implementation-defined.

TLCS-900 C operation
Bit-fields does not overlaps adjacent units. The order of allocation of bit-fields within a unit is
allocated from high-order(MSB). The order of allocation can change by -Xw option.

ISO/ANSI C
Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

TLCS-900 C operation
Refer to "TLCS-900 Compiler System User’s Guide" for the alignment of each non-bit-field member
of a structure or union object.

A.3.16 [6.5.3 Type specifiers]

ISO/ANSI C
What constitutes an access to an object that has volatile-qualified type is implementation-defined.

TLCS-900 C operation
An access processing to an object that has volatile-qualified type is not deleted due to optimization or
changed order, except when allowed under rules for evaluation of expressions.

A.3.17 [6.8.1 Conditional inclusion]

ISO/ANSI C

Whether the numeric value for character constants matches the value obtained when an identical
character constant occurs in an expression (other than within a #if or #elif directive) is implementation-
defined. Also, whether a single-character character constant may have a negative value is
implementation-defined.

97

APPENDIX

TLCS-900 C operation

The numeric value for character constants matches the value obtained when an identical character
constant occurs in an expression (other than within a #if or #elif directive). Also, a single-character
character constant can have a negative value.

A.3.18 [6.8.2 Source file inclusion]

ISO/ANSI C
A preprocessing directive of the form
include <h-char-sequence> new-line
searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between the < and > delimiters, and causes the replacement of that directive by the entire
contents of the header. How the places are specified or the header identified is implementation-defined.

TLCS-900 C operation
The search order of the header is as follows.
1. the directory indicated by -1 option
2. include directory under the directory indicated by environment variable THOMES00

ISO/ANSI C
A preprocessing directive of the form
include "g-char-sequence" new-line
causes the replacement of that directive by the entire contents of the source file identified by the
specified sequence between the " delimiters. The named source file is searched for in an implementation-
defined manner.

TLCS-900 C operation
The search order of the source file is as follows.

1. the directory of the source file during the compiling processing.

2. the directory indicated by -1 option

3. include directory under the directory indicated by environment variable THOME900
ISO/ANSI C

The method by which a sequence of preprocessing tokens between a < and a > preprocessing token
pair or a pair of " characters is combined into a single header name preprocessing token is
implementation-defined.

TLCS-900 C operation
The usable character in header name(contain path name) is as follows.

alphabet and number
space character

1#$% &' ()-@_{}~

The nonusable character in header name(contain path name) is as follows.

98

A ANSI Processing System Dependence Specifications

except for ASCII code 0x20 - OX7E
+,:=11

ISO/ANSI C
There shall be implementation-defined mapping between the delimited sequence and the external
source file name.

TLCS-900 C operation
It is mapped by generating a path for the external source file name and passing it to the OS.

A.3.19 [6.8.6 Pragma directive]

ISO/ANSI C
A preprocessing directive of the form
#pragma pp-tokensopt new-line
causes the implementation to behave in an implementation-defined manner.

TLCS-900 C operation
Refers to "3.3 #pragma Directives".

A.3.20 [6.8.8 Predefined macro names]

ISO/ANSI C
__DATE__
If the date of translation is not available, an implementation-defined valid date shall be supplied.
__TIME__
If the time of translation is not available, an implementation-defined valid time shall be supplied.

TLCS-900 C operation
The compiler stops compiling unless the correct date and time are obtained. However, the compiler
does not determine whether its own data and time are correct.

99

APPENDIX

I B Translation Limits

This chapter describes the processing system translation limits that is set forth in ISO 9899 : 1990
ANSI.

The limits value of TLCS-900 C processing shows in parenthesis " () ",and the limits value of the
above standard shows in square bracket " []".

O Nesting levels of blocks (15)[15]

O Nesting levels of conditional inclusion (255)[8]

Pointer, array, and function declarators (in any combinations) modifying an arithmetic, structure,
union, or incomplete type in a declaration (12)[12]

Nesting levels of parenthesized declarators within a full declarator (31)[31]

Nesting levels of parenthesized expressions within a full expression (32)[32]

Significant initial characters in an internal identifier or a macro name (1023)[31]
Significant initial characters in an external identifier (1023)[6]

External identifiers in one translation unit (512)[511]

Identifiers with block scope declared in one block (no limit)[127]

Macro identifiers simultaneously defined in one preprocessing translation unit (8192)[1024]
Parameters in one function definition (31)[31]

Arguments in one function call (31)[31]

Parameters in one macro definition (31)[31]

Arguments in one macro invocation (31)[31]

Characters in a logical source line (10000)[509]

Characters in a character string literal or wide string literal (10000)[509]

Nesting levels for #included files (255)[8]

Case labels for a switch statement (excluding those for any nested switch statements) (no limit)[257]
Members in a single structure or union (no limit)[127]

Enumeration constants in a single enumeration (65535)[127]

Levels of nested structure or union definitions in a single struct-declaration-list (15)[15]

O

O [[I Y [y I o o A [

The following describes the internal compiler the processing system translation limits that is not set
forth in 1ISO 9899 : 1990 ANSI.

Number of lines of one source file that can be compiled (including line feed characters) (65535)
Number of lines of one assembler file for which compiling results are output (65535)
Number of characters that can be described in inline assembly (1024)

O
O
O
O Number of times that -1 option can be specified (31)

100

History

Issue

Date

Update

1st Edition

7 Jan, 2009

1st Edition

TLCS-900 C Compiler Reference [1st Edition]

The Date of Issue: 7 Jan, 2009

TDE121-01

	TLCS-900 C Compiler Reference

	INDEX

	Part 1 About this book
	Chapter 1 Explanation of this manual
	1.1 How to Read the Manuals

	Part 2 Introduction
	Chapter 2 Compiler Introduction
	2.1 Section
	2.1.1 What Is a Section?
	2.1.2 Section Types
	2.1.3 Section Names

	2.2 Displacement
	2.2.1 What Is Displacement?
	2.2.2 Displacement Types
	2.2.3 Relationship Between Sections and Displacement

	Part 3 C Language Specifications
	Chapter 3 Toshiba Extended Specifications
	3.1 Priority Sequence of Extended Specifications
	3.2 Extended Qualifier
	3.2.1 Function Qualifier
	3.2.2 Memory Qualifier
	3.2.3 Other Qualifier

	3.3 #pragma Directives
	3.3.1 Function type
	3.3.2 Displacement
	3.3.3 Extern Directive
	3.3.4 I/O
	3.3.5 Disable Interrupt Directive
	3.3.6 Structure Packing Directive
	3.3.7 Restriction of Warning Output Directive
	3.3.8 PID Directive

	3.4 Options
	3.5 Default Status
	3.5.1 Address and Displacement
	3.5.2 Pointer Displacement
	3.5.3 Section Name and Displacement

	3.6 Alignment
	3.7 Shift Operations
	3.8 Intrinsic Functions
	3.9 Inline Assembly
	3.9.1 __ASM()
	3.9.2 __asm()

	3.10 Register Pseudo Variable
	3.10.1 General Register Pseudo Variables
	3.10.2 Control Register Pseudo Variables

	3.11 Pre-defined Macros
	3.12 Non-ANSI Specifications
	3.12.1 Integral Promotion
	3.12.2 Arithmetric Conversion of Multiplication and Division
	3.12.3 Numerical Number

	3.13 PIC Specifications
	3.14 PID Specifications

	Part 4 Generating Execution Programs from the Command Line
	Chapter 4 Compiler Driver Overview
	Chapter 5 Option Descriptions

	Part 5 Optimizations
	Chapter 6 Optimizations
	6.1 Optimizations by C compiler
	6.1.1 Assignment of Variables to Registers
	6.1.2 Integrated Stack Release
	6.1.3 Minimum Optimization
	6.1.4 Branch Optimizations
	6.1.5 Unnecessary Instructions Elimination
	6.1.6 Copy Propagation
	6.1.7 Common Sub-expression Elimination
	6.1.8 Loop Optimizations

	6.2 Optimizations by User
	6.2.1 Optimizations when Describing Source Program
	6.2.2 Optimizations by Option

	Part 6 Standard Library Functions
	Chapter 7 Standard Library Overview
	Chapter 8 Header File
	Chapter 9 Library Function
	9.1 Standard Library Function List
	9.2 Runtime Library List

	Part 7 Error Message
	Chapter 10 Error Message Format
	10.1 Types of Error Messages
	10.2 Error Message Format

	Chapter 11 Driver Error Message
	11.1 Driver Fatal Error
	11.2 Driver Warning

	Chapter 12 C Compiler Error Message
	12.1 C Compiler Fatal Error
	12.2 C Compiler Error
	12.3 C Compiler Warning

	APPENDIX
	A ANSI Processing System Dependence Specifications
	B Translation Limits

	History

