TOSHIBA

TLCS-900 Assembler Reference

1st Edition

TOSHIBA Corporation Semiconductor Company

(C)Copyright TOSHIBA CORPORATION 2009 All right reserved

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice. (W11AE-01)

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, the hardware
and/or software incorporated in the TOSHIBA products listed in this document (“TOSHIBA Products”) in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the
responsibility of the customer, when utilizing TOSHIBA Products, to fully comply with the standards of safety in
making safety design for the entire system, and to avoid the situations in which a malfunction or failure of such
TOSHIBA Products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA Products are used within specified operating ranges
as set forth in the specifications for this product, the specifications for the semiconductor devices under
evaluation, and any other related information. Also, please keep in mind the precautions and conditions set forth
in the “TOSHIBA Semiconductor Reliability Handbook” and “Instruction Manual” or “Operation Manual” that
accompany this product and any devices connected to this product.

Please always confirm the latest information of the TOSHIBA Products released on the web page of
microcomputer in the web site of TOSHIBA Semiconductor Company.

(http://www.semicon.toshiba.co.jp/eng/) (WO1AE-01)

- The TOSHIBA Products are intended for usage in the functional evaluation of semiconductor devices. TOSHIBA
Products shall not be used for purposes other than functional evaluation, such as for verification of device
reliability. The TOSHIBA Products shall not be incorporated this product into customer products. The TOSHIBA
Products shall not be converted, disassembled, modified, or used outside its specified operating range of the
TOSHIBA Products listed in this document.

- The TOSHIBA Products are intended for the functional evaluation of semiconductor devices that are designed
for use in general electronics applications (e.g., computer, personal equipment, office equipment, measuring
equipment, industrial robotics, and domestic appliances). These TOSHIBA Products are neither intended nor
warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or
failure of which may cause loss of human life or bodily injury (“Unintended Usage”).

Without limiting the generality of the foregoing, unintended Usage include atomic energy control instruments,
airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, and all types of safety devices. The TOSHIBA Products shall not be used for
Unintended Usage. (W02BE-01)

- The products described in this document shall not be used or embedded to any downstream products of which
manufacture, use and/or sale are prohibited under any applicable laws and regulations. (W03AE-01)

- TOSHIBA does not take any responsibility for incidental damage (including loss of business profit, business
interruption, loss of business information, and other pecuniary damage) arising out of the use or disability to use
the product. (WO4AE-01)

- The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
may result from its use. No license is granted by implication or otherwise under any patents or other rights of
TOSHIBA or the third parties. (WO6AE-02)

- Product names mentioned herein may be trademarks of their respective companies. (W07AE-02)

(SWE1-2E-2) ©2008 TOSHIBA CORPORATION, All rights reserved.

Preface

Preface

Thank you for using Toshiba microcomputer products.

This manual describes how to use the microcomputer development system product you
have purchased. Please keep this manual to hand when you use the product.

Toshiba will continue to make every effort to improve our products to better meet the
needs of our customers. We will highly appreciate your continued patronage of Toshiba
microcomputer products also in future.

- Microsoft®, Windows®, Windows® 2000, Windows® XP, and Windows Vista® are
either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

prefaceE-03

Preface

Technical support

The "readme.txt" file is included with the product package to help you use this product.
If you have any further questions regarding the content of this manual, please do not
hesitate to contact your local Toshiba sales representative.

Our technical support service is available if you encounter any phenomenon that seems
to be faulty while using this product. At your request we will investigate the cause of the
phenomenon and report back to you. To use this service, you need to provide us with the
data that enables us to reproduce the phenomenon, such as the operation procedure, etc.
Please note that we may not be able to deal with a phenomenon that cannot be reproduced.

INDEX

I INDEX I
Part 1 ADOUL thiS DOOK ... 1
Chapter 1 Explanation of thismanual 3
Part 2 The ASSEMIDIEI ...uuiiiiiiiiiiiiiii s 5
Chapter 2 The ASSEMDIET ... e e 7
2.1 Input and OULIPUL FIIES ... 7

Chapter 3 NSt =T 0] o] Y2 1= Vg T 11 oo 8
3.1 BaSiC ASSEMBIEr SYNTAX ... 8

0 R O o -1 = Tod =] ST PP PP PP PP TP PPPPPPPPPPRN 8

3.1.2 RESEIVEU WOIGS.....cci ittt ettt e e e e et e e e e e e e s e bbb n e e e e e e e e e s annnes 8

3.1.3 NUMEICAI VAIUB ... 8

3.1.4 SOUICE STALBIMENTS ... 10

315 COMMEBNES .t 11

3.1.6 LOCALION COUNTEL ...ttt e ettt e e e e e e r e e e e e e s s bbb e e e e e e e e e s aanes 11

3.2 Identifier of ASSemMbIlY LAUNGUAGE........coiiiieieeee e, 11

K T R o 1< 1) T PP PP PP PPPPPN 11

3.2.2 Types of Identifier ... 11

3.3 Expression of Assembly Language........cooooeriieiiiiiiiii 12

R T A b o] =] (o] PP PPPP PP 12

R I O o= =1 (0] £ J PP UPPPPPPPTPR 12

3.4 Machine Instructions in Assembly Languageccooooeiiiiiiiiii, 16

341 NUMEMIC RANGE ..o 17

3.5 ASSEMDIET DIFECLIVES ...ttt e e e e e e e 17

3.5. 1 Defining MOAUIEScooeiieeeeee e 17

3.5.2 DefiniNg SECHIONS ... 18

3.5.3 Directives for Inter-modular Identifier Referencing............ccooooeeiii, 19

3.5.4 Data Area Definition DIreCHIVEScceiiiiiiiiiiiiiiiieee et 20

355 EQU DIFBCLIVES .. 23

3.5.6 A6IGN DIFECHIVES ... 23

35,7 O DIBCHIVES ..o 24

3.6 CONLrol INSTIUCTIONS ...ttt e e e e e e e e e e e e s annnnees 24

3.6.1 File INCIUde FUNCLIONeiiiiiiiiiiiiiiee e e e e e 24

3.6.2 $maximum Control INSTFUCTIONcciiuiieiiiieiiie et 25

Chapter 4 Assembler List File FOrmato 26
Chapter 5 ASSEMDBDIEr OPLIONS ...t e 28
-1 Specify Search Path for Include Files 28

-J Recognize the Kanji Code (Japanese Version only)ccccccevieiiiiiiiiiiiiiiiiiiiienneen, 28

-Nb L] [T O e I o TP 28

-0 Specify Optimization LEVEL s 29

-V OULPUL VErsion NUMDEEuiiiiiiiiiiiiiiiiii s 29

-XE 1gNOIE ESCAPE SEOUEIICE ...t eee ettt ettt e e e ettt e e e e e e e eeab e e e e e e eeeeennns 29

-e Create Error LISt File ..o 30

-f Read Option List File.......cooiiiiiiiiiiiiiiiiiiiiiie ettt eeeaeeees 30

-g Create Debugger Information at assemble phase...............eevvieeiiiiiiiiiiiiiiiiiiiiiiieeeee 30

- Create an ASSEMDBIEr LSt Fileoooeiiiiiiiiiei e 30

-0 Specify an QutpUL FIIENAME s 31

-w Specify Warning LEVEN s 31

Chapter 6 Assembler Limitation. s 32
e T G T I o= T 01 = 33

INDEX

Chapter 7 The LiNKer .. e 35
7.1 Inputand OUIPUL FIlES ..o 35

Chapter 8 Link Command File ... e 36
8.1 Basic LiNK CommaNnd Filecooiiiiiiiiiiieee e 36

8.1.1 RESEIVEU WOIGS....ceiiiiiiiieiee ettt ettt e e e e st e e e e e s r e e e e e e e e e aans 36

8.1.2 IAeNTITIOIS. .o 36

8.1.3 EXPIESSIONS ... et 36

8.1.4 LOCALION COUNTET ...ttt e e e ettt e et e e e e et r e e e e e e s s bbb e e eeeaeeeaaaas 37

8.1.5 Operators and Their Order of Precedencecoooeviiiiiiiiiii 37

8.1.6 FuNCtional OPEratorscooieiiiiii e 37

8.1.7 ASSIgN STAtEMENTS ... 38

8.1.8 COMMEBNES ... 39

8.2 Memory Definition Part ... 39

8.2.1 Function of Memory Definition Part..............ccooii 39

8.2.2 Memory Definition Part FOrmat ... 39

8.2.3 Predefined MEMOIY......ccooiiiiiii i 40

8.3 Section Definition Part...........coiiiiiiiiiiiiii e 41

8.3.1 Function of Section Definition PArtoocuiiiiiiiiiiiiiiieeeee e 41

8.3.2 Section Definition Part FOIMAL............coeiiiiiiiiiiiiiiieieee e 41

8.3.3 Output Section Name Field ... 41

8.3.4 Output Specification Field ... 42

8.3.5 AUIMDULE FIEIA ..oeeeiiiiiie e e e 43

8.3.6 Input Section Specification Field ... 45

8.3.7 Padding Field.........coooiiiii 45

8.3.8 Output Memory Field ... 45

8.4 Symbol Definition Part...........ooo 46

8.5 Incremental LinKiNngooooiii i 46

8.5.1 Processing in Incremental Linking ... 46

Chapter 9 Linker Map File FOrmat ..o e 48
Chapter 10 LiNKEr OPtiONS .. . et e 50
-F Specify Fill Value for Empty Area in Output SEction ..., 50

-L Specify Search Path for INPUE FIEs. ... 50

-V OULPUL VErsion NUMDEE it 50

-e Create Error LISt Fileoooiiieeeeee e 51

-g Create Debugger Information at link Phaseeeee e 51

- Create a LINK Map Fileuuuiiiiii e 51

-0 Specify an OQutpUL FIIENAME ... 52

-r Perform Incremental LiNKiNg.........oooiiiiiiiiiiiiiiiiiiiiiiiieiieiieeiieeeeeeeeeeebeeeveeeeveeeeeeeeeees 52

-u Link Undefined Symbol ... 52

-w Specify Warning LEVEl 53

Chapter 11 Linker Limitation ... oo 54
Part 4 The MacCro PreprOCESSOrttt 55
Chapter 12 The IMaCro PrePrOCESSOr «..u ettt et e ettt et e e e e aneeeeaas 57
12.1 MACrO PreproCeSSOr OVEIVIBWuuuuuuueunniisssssssssssssssssssssssesssasssassssessasssasssasssanns 57

12.2 INPUt aNd OULPUL FIIES ...eeeiiiii s 57

Chapter 13 MaCro PreproCessOr GramMIMar. e et e et e e et e eaa e eane e aaneeeaneeanenn 58
131 CRAFACTEN SEU ...eeieiieieie ettt ettt ettt et e e et b et e e et b e e e e s b b e e e e s anbre e e e anbbeeeeannneeeaas 58

IR T O g = = Tos (=Y g1 1T R 58

TR I o (< 0] 1T OO PP P PPPPPRTPPPRPPTPPRRN 58

13.4 CONSTANTS.....uiiiiiiiiii 59

IR TR T ot o] (=151 o] 1R 60

IR T T 4 1o o =T G T Ut =) R 60

13.7 COMMENTS ..ttt s 60

13,8 LINE SPIICE . uuuttuuiiiiiiiiiii e ————— 60

Chapter 14 Preprocess FUNCHIONSo..iiie e et r e e e e e e 61
Chapter 15 Macroprocess FUNCLIONSeiiiii i e e e e ee e 62
IO R O T =] =1 (o] £ U PPPPPR 62

T2 O] o [o 11 (Te] g F= 1IN 1V, - Uot o PP RURTP 63

TG T = =T o] = Uot=T 0 T o A 1Y/ - Ut 1 65

15.4 NUMEEICAI IMACIOcii ittt e s e e e e e e st e e e e e e e e s nnreeees 66

TR ST 1 1Yol @do]) 1 o] I Y/ F- T o 1 67

15.6 PArtiCUIAr IMIACTO ...ccoiiiieiieeieee ettt e e e s e e e e e e e et e e e e e e e e s nnanees 71

Chapter 16 Macro Preprocessor OPtiONSce.e e e e et rae e aneeeas 72
-D [T 1T AV Ut o J PP PR POPPRRRRT 72

-GN Specify File Name Used in Error Message........cccoeevveeiieeiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeae, 72

-1 Specify Search Path for INClude FileSuuuuuiiiiiiic e 72

-J Recognize the Kanji Code (Japanese Version only)ccccccvvveeviiieiiiiiiineeeeeeeeee, 73

-U Disable the Macro Definitioneeeiiiiiiiiiiiiiiiieieee e 73

-V OUtPUL VErsion NUMDETuuiiiiiiiiiiiiiii s 73

-e Create Error LISt Fleooo it 74

-f =T Lo @ o) 1o o I 1) PPt 74

-9 Create Debugger INfOrmationueuuuuiiieiiiiii s 74

-l Create a Macro Preprocessor LiSt File.........uuuuiuuiiiiiiiiiiiiics s 74

-0 Specify an OQULPUL FIlENAMEuuuiii s 75

-S Define Identifier of Variable FUNCLION...........ccuviiiiiiiie e 75

Chapter 17 Macro Preprocessor Limitationc.ooviiiiiiiiii i e 76
T O T I o= I o] - U = 77
Chapter 18 L= T o] =T g - o PP 79
18.1 LiDrarian OVEIVIEWuueiiiiiiie ittt ettt e e e sttt e e e e s e e st e e e e e e e e s nnnnbees 79

RS0 7 U s (1] o oo 0 0] 0 U o 79

18.3 INPUt aNd OULPUL FIIES ...vuvreiiiiiiiiei s 79

Chapter 19 Librarian OptioNnscceiiiiii i 81
-V OUtPUL Version NUMDETuuuiiiiiiiiiiiiiiii e 81

-d Delete @ MOTUIE ... 81

- Create Error LISt Fle ... 81

-f =T Vo B @) o o 1Y 1 PPt 82

-l Output Module Identifier INfOrmation ... 82

-r Create Library File and Register and Update Modules................uvvveivnniiniiinniinnnnnn. 82

-t Output Module INfOrmMationuueiieiiiii 83

Part 6 The ODJECT CONVEITEN ... 85
Chapter 20 The ODJECTt CONVEITETttt ettt ettt e e e eens 87
20.1 ODject CONVEITEr OVEIVIEW ...ccciiiiiiiiiiiiiieeee e e e ettt e e e e e e et e e e e e e e e bbb e e e e e e e e e s nnnnnaeeas 87

20.2 SEArtUP COMMEBNG...ciiiiiiiiiitiii ettt et e e e e e s st e e e e e e e e s st b b e e e e e e e e e e annnneees 87

20.3 INpUt and OULPUL FIIESeveiieiiee e 87

Chapter 21 Object CONVErter OPTIONS ...ttt e e aeeens 88
-F SeleCt ODJECT FOIMAL........ciiiiiiiieiei e 88

-P Specify Fill Value for EMPLY AFBa........ocuuuiiiiiieieiiiiiiieiee e 88

-V OutpuUt Version NUIMDETuuiiiiiiiie e 89

-C SPECITY @ COMMIBNTeiiiiiiiiiiiie et e e e e 89

-e Create Error LISt FIleuuuueeiiiiiiiiiiiiiiiiiiiii s 89

-f Read Option LiSt File.........uueiiiiie e 89

-l Output an Object CONVEITEr LiSt.........iiiuuiiiiiiieieiiiiiiie e 90

-0 Specify an OULPUL FIIENAMEoiiiiiiiii e 90

-ra Specify Object Output Range (address specification).................uevvveeiieiieeeieeniinnnnnn. 90

INDEX

-rb Specify Object Output Range (section specification)ccccceevvviiiiiiiiiiee e, 91

Part 7 EITOr MESSAGEccoeieiiiieiiie et e e e e 93
Chapter 22 Error Message FOIMaAL........coiiiiii i et eeas 95
22.1 TYPeS Of ErTOr MESSAQEcce e e e e e e e 95

22.2 Error Message FOIMAL........couuuuiiiieeiieeiiiie s e e e e e e e et a e e e e e e e et e s e e e e e eeaannn e e eees 95

Chapter 23 ASSEMDBDIEr EFTOr IMESSA0ES . vnetneteeeeeeeeeee ettt et e e et et e e e eneaneaeeaeanes 96
23.1 ASSEMDBIEr FAtal EFTOISeviieiiiiee ettt e e e et e e e e e e e eeaneees 96

P A AN =T o 0] 1] ol =l (o < J TP RRRPPR 97

23.3 Assembler Warning EITOrSccooeeiiiie e 98

Chapter 24 LiNKer Error IMESSA0ES . .cuueeiee ettt et ettt e e e e ns 100
24,1 LINKEr Fatal EXTOIS..cciiiiiiiiiiiiiiiee ettt e e e ettt e e e e e s s bbb eeeeeeeesannnes 100

P I =] gl = (o] £ T PP PPPRPPRR 102

24.3 LinKer Warning EFTOTSuuuiiiiieeeiiiieieee ettt e et e e e e e e 103

Chapter 25 Macro Preprocessor Error IMESSAQgES e it eiee ettt eeaeeaaaees 105
25.1 Macro Preprocessor Fatal Errors..........cooeeeeeieei e, 105

AT A \V/ = ol do B e = o o Tol oo gl =t o] 106

25.3 Macro Preprocessor Warning ErrOrS........cooeeeeeeeee e, 109

Chapter 26 Librarian Error IMESSAgES ... ueuuee ettt ettt e e e et e e eeee e e et e e eaeaneanans 110
26.1 Librarian Fatal ErTOrs.......cuuuiiiiiie oot 110

26.2 LIDIarian BITOFSeeeii ittt e e e e e e st e e e e e e e s ananne 111

26.3 Librarian Warning ErrOrScccooiiee i 111

Chapter 27 Object Converter Error MESSA0ES. .. uuure et it eaeat et et eaeeeeneanaaeeaeaneanenns 112
27.1 Object Converter Fatal Errors........ccooovveeii i 112

P N O o)1= To A @fe T N T o T =l g (o] £ 113

27.3 Object Converter Warning Errorscoooeeeeeiiie e, 113

Vi

Part 1 About this book

Chapter 1 Explanation of this manual

Chapter 1 Explanation of this manual

This manual includes specifications relating to assembly language, the linker and link command files,
the Macro Preprocessor, the librarian, and the object converter. They are collectively indicated for every
tool.

This manual indicates further details more than "TLCS-900 Compiler System User's Guide" to
customize for user needs. Additionally, the contents of explanations relating to option, error message,
warning message are includes. We hope you will make use of your application development.

Format Description Rules

[Format Description Example]

#pragma section <Section Type> [<Section Name>]
[<Displacement>]|<Start Address>]

#pragma section For commands and options, etc., parts that do not have the enclosure symbols or
delimiting symbols described hereafter are noted as is in the actual program.

<Section Type> Specifiers enclosed in < > describe character strings or numerical values specified
within < > in the actual program.

[<Section Name>]Specifiers enclosed in [] can be omitted in the actual program.

[<Displacement> | <Start Address>]
For specifiers delimited by " |, specify one of those items in the actual program.

Memory Space
The memory space for "TLCS-900 Family" is 16M byte in address range from 0x0 to Oxffffff.

The usable section type, displacement, and address range for section directives which is used in
assembler source programs are as follows.

Table 1-1 Displacement and Adress range

Section type Displacement Adress range
small 0x0 - Oxff
data medium 0x0 - Oxffff
large 0xO0 - Oxffffff
medium 0x0 - Oxffff
romdata
large 0x0 - Oxffffff
medium 0x0 - Oxffff
code
large 0xO0 - Oxffffff

Part 2 The Assembler

Chapter 2 The Assembler

Chapter 2 The Assembler

2.1 Input and Output Files

Input and Output Files

The suffixes used in the names of input and output files of the Assembler are as follows.

Table 2-1 Input and Output files of the Assembler

Suffix File type Classification
.asm Assembly source file Input
rel Relocatable object file Output
st Assembly List file Output

m Assembly source file
These files are the assembly language is described.

m Relocatable object file
These files are the result of assembling. These files are the files that complies with the IEEE695
object module format. Because these files are relocatable, it is not possible to obtain final objects
without linking them using the Linker.

m Assemble list file
The list files include the assemble list, symbol list, cross-reference list, etc. The " -1 " option
must be specified for these files to be output.

Part 2 The Assembler

Chapter 3 Assembly Language

3.1 Basic Assembler Syntax

The assembly language is described by the source statements according to specific rules of notation.
This chapter describes the elements that make up assembly language.

3.1.1 Character Set

The following list shows the characters that can be used when writing an assembly source program.

Character set:

English alphabets | decimal digits | graphic characters | new-line space character
Graphic characters:

P"#$% & ()*+,-./1;<=>?[\]"_{|}~@

In addition to the characters listed above, other characters can be used in comments. The question mark
(?)and pound sign (#) and (@) are used by Macro Preprocessor. Please handle these three characters,
with care.

3.1.2 Reserved Words

Reserved words are predefined character strings used by the Assembler. They include directives,
mnemonics, and registers, etc. Reserved words do not differentiate between uppercase and lowercase
letters.

See each microcomputer’s "Data Sheet" for details about machine instructions and registers.

abs align code data db dd dfb
dfd dfl dfp dfw dl dp dw

dsb dsd dsl dsp dsw end equ
extern fdatad fdatas fdatax file fimdh Ffimdl
fims fimxh fimxl Fimxm include large line
medium module org public romdata section sizeof
small startof symbol_a symbol b symbol n symbol_t

3.1.3 Numerical Value

Integer

All integer are handled as 32-bit width numerical values within the assembler. When a numerical value
that is not expressed as 32-bit width is specified, only the lower 32-bit width of the specified numerical
value is handled. The character using integer do not differentiate between uppercase and lowercase letters.

Binary : Expressed as strings of 0s or 1s starting with Ob or Qy.

Octal : Expressed as strings of numbers 0 to 7 starting with 0.

Decimal : Expressed as strings of numbers 0 to 9 starting with other than 0.
Hexadecimal : Expressed as alphanumeric strings consisting of numbers 0 to 9 and a to f

and starting with Ox.

Chapter 3 Assembly Language

Floating-point Number

Types of Floating-point number

There are three types of single-precision processing 32-bit data, double-precision processing 64-bit
data, and extended double-precision processing 80-bit data in the floating-point number. The following
describes each type.

Single-precision floating-point number
The single-precision floating type (float type) is confromed with IEEE754 format. The float type
consists of 32-bit data including sign 1-bit, exponent 8-bit, and significand 23-bit.

Double-precision floating-point number

The double-precision floating type (double type) is confromed with IEEE754 format. The double type
consists of 64-bit data including sign 1-bit, exponent 11-bit, and significand 52-bit.

Extended double-precision floating-point number
The extended double-precision floating type (long double type) is confromed with IEEE754 format.
The long double type consists of 80-bit data including signed 1-bit, exponent 15-bit, and significand 64-

bit.
Table 3-1 Type of Floating-point number
Format Type Size
Single precision float 32 bits
Double precision double 64 bits
Extended double long double 80 bits
precision

Description procedures
The description procedures of the floating-point number is confromed with ANSI or ISO/IEC 9899.

When the significant part starts from a period (.12, .3e5F, and etc.), a syntax error occurs. (ANSI stated
above and ISO/IEC 9899 allow this format.)

The following are description procedures of the floating-point number.

Floating-point number :
<digit-sequence> . <significand digit part> [<exponent part>] [<floating suffix>]
| <digit-sequence> . [<exponent part>] [<floating suffix>]
| <digit-sequence> <exponent part> [<floating suffix>]
Exponent part:
e [+|-] <digit-sequence>
| E [+|-] <digit-sequence>
Floating suffix :
fll|F|L

The floating-point number has significand part that is followed by an exponent part and a suffix that
specifies its type. The components of the significand part are descripted a digit-sequence representing the
whole-number part, followed by a period (.), followed by a digit-sequence representing the fraction part.
The components of the exponent part are described an "e" or "E" followed by an exponent consisting of

an optionally signed digit sequence. The significand part needs the whole-number part and either a period
or a exponent part.

Part 2 The Assembler

The suffix represent the floating-point number type. When the suffix is omitted, the floating-point
number shall be regarded as the double-precision floating type. The suffix is respectively corresponded to
the type as follows.

"f" or "F" : Single-precision floating type (float type)
No suffix : Double-precision floating type (double type)
"|"or"L" :Extended double-precision floating type(long double type)

[Caution]
When a floating-point number is described in a place where a integer constant is required, the decimal
point and below of that value is truncated, and the value is converted to a 32-bit width integer constant.

Character Constants
Character constants are expressed with enclosing in single-quotes (). Character constants have a 32-
bit width value and are put in order by the described order, from the start of the string. When there are
fewer than 4 bytes, the beginning is padded with 00s. The excess part is omitted when a character
exceeds 4 bytes.

Escape Sequence
Two kinds of escape sequence can be used for character constants: one is the escape sequence written
directly as a value after the " \ . This is either an octal number of 3 characters maximum in the range 0 to
377 after the "\ " or a two-digit hexadecimal of 0 to ff after " \x ™.
The other is one of the following special escape sequences:

\0 0x00 (NUL) \a 0x07 (Alert, Bell)

\b 0x08 (Backspace) \f 0x0c (Form feed)

\n Ox0a (Line feed) \r 0x0d (Carriage return)
\t 0x09 (Horizontal tab) \v OxOb (Vertical tab)

\" 0x22 (") \' 0x27 (")

\? 0x3f(?) W 0x5e (V)

3.1.4 Source Statements

Source Statement Description Format

With an assembler source program, it is necessary to follow a description format as determined below.
Statements written in this description format are called source statements.

[Description Format]

[<Label>:]
[<Instruction> [;<Comment>]

<Label> The labes is identifier that starts at the head of a line, and include a colon (:) at the end of
the label. The labels show the location of statement.

<Instruction>
The instruction is machine instructions, directives, or control instructions.

<Comment>
The comment starts with a semicolon (;) and extends to the end of the line. The content of

a comment is ignored by the Assembler.

10

Chapter 3 Assembly Language

3.1.5 Comments

The comment starts with a semicolon (;) and extends to the end of the line. The content of a comment
is ignored by the Assembler.

m A semicolon in the character string enclosed in double quotes (") or single quotes (') is not treated
as the start of a comment field but is processed as a normal character.

m When using double comment sign which is described two comment signs continuously, the comment
does not appear in an assemble list file.

3.1.6 Location Counter

The location counter show the current address. The location counter value is shown by doller sign ($).
The location counter is initialized at the head of the section, moreover, it is updated each time a source
statement of one line is converted into the object code.

3.2 ldentifier of Assembly Launguage

3.2.1 Identifier

The character string showing numerical value and address is called identifier. The identifier is
character string which start with other than digit.

Usable character set:
English alphabets | decimal digits | period | underscore

The assembler distinguishes between the uppercase and lowercase letters which are used for a
identifier.

3.2.2 Types of Identifier

Identifier are classified into the following types.

Label Labels are identifiers which represent the locations of machine instruction and data
areas, and are referenced by jump instructions and branch instructions. Only one
label can be described on one line. To define multiple labels in one address, define
them on independent lines. When referencing a label, specify it without the colon.

Variable name Variable names are identifiers defined using the data area definition directives.
Module name Module names are identifiers defined using the "module” directive.

Section name Section names are identifiers defined using the "section" directive.

EQU name EQU names are identifiers defined using the "equ" directive.

External identifier There are two types of external identifiers: external definition identifiers
declared with the "public" directive and external reference identifiers declared with
the "extern" directive.

Part 2 The Assembler

3.3 Expression of Assembly Language

3.3.1 Expressions

Expression are used to specify the operands of machine instructions and directives. Expressions consist
of combinations of one or more terms and operators.

Value of an Expression

The values of expressions are treated as signed 32-bit width integers. If an overflow occurs during
valuation of expressions, the part which exceeds 32-bit width is ignored.

Absolute Expression

The expression whose value fixed at assembling is called absolute expression. For example, integers,
character constants, and combination of them and operators. The expression whose value fixed at linking,
for example a external reference symbol and etc. is not an absolute expression.

3.3.2 Operators

Expressions can include arithmetic operators, logical operators, and functional operators. The tables
below shows the respective operator types. In these operators, four rules operation of the arithmetic
operation and functional operators fims, fimdh, fimdl, fimxh, fimxm, and fimxI only can process a
floating-point number.

The operation rules including the floating-point number and the function of each functional operator
are described hereinafter.

Arithmetic operators
Table 3-2 Arithmetic operators

Operator Symbol Notation

Unary minus - -term

Add + term + term
Subtract - term - term
Multiply * term * term
Divide *1 / term / term
Remainder % term % term
Right shift *2 >> term >> term
Left shift *2 << term << term

*1) Division by zero results in an error.
*2) The second term in right and left shifts must be an positive number.

Bitwise operators

Table 3-3 Bitwise operators

Operator Symbol Notation
Ones complement ~ ~ term
Bitwise AND & term & term
Bitwise OR | term | term
Bitwise exclusive OR N term / term

12

Chapter 3 Assembly Language

Functional operators

Functional operators are operator which has arguments.

Notation of functional operators
m There must be no space between the functional operator and the left parenthesis " (*.
m There is no differentiation between uppercase and lowercase letters in functional operators.

Table 3-4 Functional Operators

Operator Symbol Notation

Retu_rr)s the upper 32-—b|t pattern of the double- fimdh fimdh(<Expression>)
precision floating-point number
Retu_ms the Iower 32_—b|t pattern of the double- fimdl fimdl(<Expression>)
precision floating-point number
Retu_rns the_ bit pattern of the single-precision fims fims(<Expression>)
floating-point number
Returns the upper 16—l?|t patt_ern of the extended fimxh fimxh(<Expression>)
double-precision floating-point number
Returns the lower 32-bit pattern of the extended . . .

. . . fimxl| fimxI(<Expression>)
double-precision floating-point number
Returns the middle 32-bit pattern of the extended . . .

. . - fimxm fimxm(<Expression>)
double-precision floating-point number
Returns the size of the section sizeof sizeof(<Section_name>)
Returns the start address of the section startof startof(<Section_name>)

fimdh

[Description Format]

| fimdh(<Expression>)

[Function]
For fimdh, the upper 32 bits of a double-precision floating type (double type) constant specified in the

<Expression> is returned as a value converted to the IEEE754 format.

[Explanation]
The evaluation result of <Expression> must be the double-precision floating constant.
When <Expression> is except double-precision floating-point number, a warning occurs. Thus,

<Expression> is regarded as the double-precision floating type.

When the evaluation result of <Expression> against the description rules of the floating-point number,

an error occurs. Thus the value of <Expression> is processed as 0.

| fimd|

[Description Format]

| fimd1 (<Expression>)

[Function]
For fimdl, the lower 32 bits of a double-precision floating type (double type) constant specified in the

<Expression> is returned as a value converted to the IEEE754 format.

Part 2 The Assembler

[Explanation]

m The evaluation result of <Expression> must be the double-precision floating constant.

m When <Expression> is except double-precision floating-point number, a warning occurs. Thus,
<Expression> is regarded as the double-precision floating type.

m When the evaluation result of <Expression> against the description rules of the floating-point number,
an error occurs. Thus the value of <Expression> is processed as 0.

| fims

[Description Format]
| Fims (<Expression>)

[Function]
For fims, the single-precision floating type (float type) constant specified in the <Expression> is
returned as a value converted to the IEEE754 format.

[Explanation]

m The evaluation result of <Expression> must be the single-precision floating constant.

m When <Expression> is except single-precision floating-point number, a warning occurs. Thus,
<Expression> is regarded as the single-precision floating type.

m When the evaluation result of <Expression> against the description rules of the floating-point number,
an error occurs. Thus the value of <Expression> is processed as 0.

| fimxh

[Description Format]
| Fimxh(<Expression>)

[Function]
For fimxh, the upper 16 bits of a extended double-precision floating type (long double type) constant
specified in the <Expression> is returned as a value converted to the IEEE754 format.

[Explanation]

m The evaluation result of <Expression> must be the extended double-precision floating constant.

m When <Expression> is except extended double-precision floating-point number, a warning occurs.
Thus, <Expression> is regarded as the extended double-precision floating type.

m When the evaluation result of <Expression> against the description rules of the floating-point number,
an error occurs. Thus the value of <Expression> is processed as 0.

| fimx|

[Description Format]
| Fimx1 (<Expression>)

[Function]
For fimxl, the lower 32 bits of a extended double-precision floating type (long double type) constant
specified in the <Expression> is returned as a value converted to the IEEE754 format.

[Explanation]
m The evaluation result of <Expression> must be the extended double-precision floating constant.

14

Chapter 3 Assembly Language

m When <Expression> is except extended double-precision floating-point number, a warning occurs.
Thus, <Expression> is regarded as the extended double-precision floating type.

m When the evaluation result of <Expression> against the description rules of the floating-point number,
an error occurs. Thus the value of <Expression> is processed as 0.

I fimxm

[Description Format]
| Fimxm(<Expression>) |

[Function]

For fimxm, the middle 32 bits (from 17th to 48th) of a extended double-precision floating type (long
double type) constant specified in the <Expression> is returned as a value converted to the IEEE754
format.

[Explanation]

m The evaluation result of <Expression> must be the extended double-precision floating constant.

m When <Expression> is except extended double-precision floating-point number, a warning occurs.
Thus, <Expression> is regarded as the extended double-precision floating type.

m When the evaluation result of <Expression> against the description rules of the floating-point number,
an error occurs. Thus the value of <Expression> is processed as 0.

I sizeof

[Description Format]
|sizeof(<Section_name>)

[Function]
Returns the size of the section specified in <Section_name>.

[Explanation]

m The section size returned by sizeof does not fix until all files have been linked.

m Specify a section name defined by a section directive in that module in <Section_name>. An error
occurs if the specified section name does not exist in that module.

I startof

[Description Format]
|startof(<Section_name>)

[Function]
Returns the start address of the section specified in <Section_name>.

[Explanation]

m The starr address returned by startof does not fix until all files have been linked.

m Specify a section name defined by a section directive in that module in <Section_name>. An error
occurs if the specified section name does not exist in that module.

Part 2 The Assembler

Operator Precedence
The operators have the order of precedence in using. The tables below shows the operator precedence.

Table 3-5 Operator Precedence

Precedence Operator

1 Unary operators (-, ~) and functional operators (sizeof, startof, etc.)

Multiply, divide, and remainder (*, /, %)

Add and subtract (+, -)

Shift operations (>>, <<)

Bitwise AND (&)

Bitwise Exclusive OR ()

~N[(o(a|h~lw|N

Bitwise OR ()

3.4 Machine Instructions in Assembly Language

Machine instruction are instructions for the microcomputer to actually operate. The description format
follow the source statement description format, <Instruction> field is described as follows.

[Description Format]

[<Label>:]
<Mnemonic> [<Operand>] [;<Comment>]

<Mnemonic> It is a name of a machine instruction.
<Operand> <Operand> is specified pre-established addressing mode by each <Mnemonic>. The
addressing mode vary each microcomputer.

See each microcomputer’s "Data Sheet" for details about machine instructions. In addition, some
instructions are converted to situational machine instruction in assembler language, and they are
undocumented in "Data Sheet".

® Jump instruction (j)
A jump instruction is converted to the smallest machine instruction, considering the range to branch

destination, displacement, absolute branch or relative branch, when the optimize option -O1 is specified.

Table 3-6 Jump Instruction Optimization

changed machine instruction

-00 -01

jp [cc, Jaddress
or

j [cc,]address jp [cc, Jaddress jr [cc, Jaddress
or

jrl [cc, Jaddress

j instruction

@ Subroutine call instruction (cal)
Subroutine call instruction is converted to the smallest machine instruction, considering the range to

branch destination, displacement, absolute branch or relative branch, when the optimize option -O1 is
specified.

16

Chapter 3 Assembly Language

Table 3-7 Subroutine Call Instruction Optimization
changed machine instruction
-0O0 -01

j instruction

call [cc, Jaddress
cal [cc, Jaddress call [cc, Jaddress or
calr [cc, Jaddress

3.4.1 Numeric Range

The range of numeric resulting from a constant expression in an operand depends on the mnemonic
and addressing mode. A warning message is output and the overflow part is truncated if the value
exceeds the anticipated range.

3.5 Assembler Directives
The Assembler directives include a range of instructions such as controlling how the assembler

functions. Assembler directives can be classified according to their function, as follows:

Directives controlling modules and sections
| module end section align org

Directives defining data

db dw dp dd dl
dfb dfw dfp dfd dfl
dsb dsw dsp dsd dsl
fdatas fdatad fdatax

Directives for inter-modular symbol referencing
| public extern |

Directives for defining symbols
[equ |

Directive Notation
Assembler directives do not normally differentiate between uppercase and lowercase letters.

3.5.1 Defining Modules

I module

[Description Format]
[module <Module_name>

[Function]
Declares the name of a module.

[Explanation]

m The identifier specified in <Module_name> becomes the name of the module.

m This directive is written in the assembly source file header.

m This directive can be specified only once per file. If <Module_name> is specified more than once in a
file, a warning is output and the second and subsequent declarations are ignored.

Part 2 The Assembler

m When this directive is omitted, the module takes the name of the assembly source file excluding the
suffix.

|end

[Description Format]
lend

[Function]
Declares the end of a module.

[Explanation]

m This directive indicates the end of a module.

m This directive is written in the end of an assembly source file.

m An error is output if this directive is not specified.

m A warning is output if source statements appear after the end directive, and all such source statements
are ignored by the assembler. However, they are output to the assembler list file.

3.5.2 Defining Sections

When defining a section according to machine instructions, variables, and constant types, use the
section directive. The section directive is valid until next section directive or end directive appears. The
section has 3 types as follows.

code section This is a section consolidated machine instructions.

data section These are data that change values during program execution consolidated as
memory allocation units.

romdata section These are data that do not change values during program execution consolidated as
memory allocation units.

|secﬁon

[Description Format]
|<Section_name> section <Type> [<Allocation>] [<Alignment>]

[Function]
Declares that the program or data that follows this section directive belongs to <Type> section.

[Explanation]
m <Section_name>
Specifies a section name. A section name is character string that can be used as a identifier.
m <Type>
Specifies a section type.
m <Allocation>
The location when allocating a section on memory is specified using displacement or absolute
address.
When <Allocation> is omitted, it is regarded as large.

18

Chapter 3 Assembly Language

® Displacement specification
Specify the displacement either small or medium or large. When the displacement is
specified, the section become a relative address section. However, only data section can
specify small.
® Absolute address specification
Specify a constant expression, in the format abs = <Absolute Address>. When an
absolute address is specified, the section become an absolute address section that allocation
address is fixed. The identifier included an absolute address section has absolute address.
m <Alignment>
Specify the alignment when a section is allocated on memory, in the format align=[<Expression
1>][,<Expression 2>].
<Expression 1> shows the alignment of the section start.
<Expression 2> shows the alignment between each data in a section.
When <Alignment> is omitted, it is regarded as "align=1,1". Although <Expression 1> and
<Expression 2> are omissible, respectively, both are not simultaneously omissible.
<Expression 1> specifies the value which can be expressed with power-of-2. When it is not a
value which can be expressed with power-of-2, it becomes warning, and it is revalued to the
nearest 2".

3.5.3 Directives for Inter-modular Identifier Referencing

Identifiers such as variables and labels defined in a section cannot simply be referenced from another
module. Identifiers should be declared using one of the following directives to allow them to be
referenced from other modules.

public directive The public directive allows identifiers defined within one module to be referenced
from other modules.
The identifier declared by this directive is called a public symbol.

extern directive The extern directive allows the referencing of identifiers whose value are defined in
other modules and undefined in current module.
The identifier declared by this directive is called an external reference symbol.

| public

[Description Format]
|[public <Symbol>[,<Symbol>, ,<Symbol>]

[Function]
Declares <Symbol> as a public symbol.

[Explanation]

m Enables <Symbol> to be referred from other modules.

m A <Symbol> must be an identifier with a defined value in the module.
m This directive can appear anywhere in the assembly source file.

Part 2 The Assembler

| extern

[Description Format]

|extern [<Displacement>] <Symbol>[,<Symbol>, ,<Symbol>]

[Function]
Declares <Symbol> to be an external reference symbol.

[Explanation]

m Declares that the value of <Symbol> defined in another module can be referred.

m When the value of <Symbol> cannot be defined within current module.

m This directive can appear anywhere in the assembly source file.

m In <Displacement> specify the displacement specified in the section directive for the section (in
another file) in which the symbol is actually defined.

m When a symbol in an absolute section is declared by "extern", use the extern directive to specify the

appropriate displacement in the mapping address in the section directive.

m When the displacement specified in the section directive and the <Displacement> specified in this
directive are mismatched, an error occurs at linking.

m When <Displacement> is omitted, it shall be regarded as large.

3.5.4 Data Area Definition Directives

The following four data area definition directives are used to define memory block for data and to
initialize the memory block.

d<Size> - definition directive for memory area of integer data with initial value (1)
d dw dp dd dl

df<Size> : definition directive for memory block of integer data with initial value (2)
dfb dfw dfp dfd dfl

ds<Size> : definition directive for memory block of integer data without initial value

dsb dsw dsp dsd dsl
fdata<Size> : definition directive for memory area of floating-point data with initial value
fdatas fdatad fdatax

Table 3-8 Data Definition Directives

Each defined area is initialized with the value specified in <Expression>.

Definition with Continuous area Definition
Size N definition without initial
initial value L
with initial value value
8-bit integer area db dfb dsb
16-bit integer area dw dfw dsw
24-bit integer area dp dfp dsp
32-bit integer area dd, dl dfd, dfl dsd, dsl
| db, dw, dp, dd, dI

[Description Format]

|d<Size> <Expression>[,<Expression>, ,<Expression>]

[Function]

Defines the number of integer data areas specified in <Expression> of the size specified in <Size>.

20

Chapter 3 Assembly Language

[Explanation]

Specify the size of the area to be allocated to one integer by specifying one of the following
characters in <Size>.

B Area for 8-bit integers
w Area for 16-bit integers
P Area for 24-bit integers

Dor L Area for 32-bit integers
<Size> cannot be omitted.
<Expression> is an expression for initializing the defined area.
Other than absolute expression can be specified in <Expression>.
An error occurs when <Expression> does not evaluate to a numerical value.
When "B" is specified in <Size>, character string can be specify in <Expression>’s place. <Character
string> is specified by character string for initializing the defined area. In this case, " \0 " is not added
to the end of the area. The maximum limit of length of character string by <Character string> is 511
byte. Error is output when the limit exceeds.
When the value of <Expression> is greater than the size specified in <Size>, a warning is output and
the overflow (high bits) is ignored.
A comma (,) must be inserted between <Expression>s.

| dfb, dfw, dfp, dfd, dfl

[Description Format]

|df<Size> <Expression 1>,<Expression 2> |

[Function]

Defines the number of contiguous integer data areas specified in <Expression 1> of the size specified

in <Size>. All defined areas are initialized with the value specified in <Expression 2>.

[Explanation]

Specify the size of the area to be allocated to one integer by specifying one of the following
characters in <Size>.

B Avrea for 8-bit integers
w Area for 16-bit integers
P Area for 24-bit integers

DorL Areafor 32-bit integers
<Size> cannot be omitted.
<Expression 2> is an expression for initializing the defined area.
Other than absolute expression can be specified in <Expression 2>.
An error occurs when <Expression 2> does not evaluate to a numerical value.
When "B" is specified in <Size>, character string can be specify in <Expression 2>’s place.
<Character string> is specified by character string for initializing the defined area. In this case, "\0" is
not added to the end of the area. The maximum limit of length of character string by <Character
string> is 511 byte. Error is output when the limit exceeds.
When the value of <Expression 2> is greater than the size specified in <Size>, a warning is output
and the overflow (high bits) is ignored.
<Expression 1> is the number of defined areas and must be an absolute expression. If not, an error
occeurs.

21

Part 2 The Assembler

m |f <Expression 1> does not evaluate to a numerical value, an error occurs. Forward reference of an
absolute expression is also not allowed.

| dsb, dsw, dsp, dsd, dsl

[Description Format]
|ds<Size> <Expression> |

[Function]
Defines the number of contiguous integer data areas specified in <Expression> of the size specified in
<Size>. The areas are not initialized.

[Explanation]
m Specify the size of the area to be allocated to one integer by specifying one of the following
characters in <Size>.

B Avrea for 8-bit integers
w Area for 16-bit integers
P Area for 24-bit integers

DorL Areafor 32-bit integers

m <Size> cannot be omitted.
<Expression> is the number of defined areas and must be an absolute expression. If not, an error
occeurs.

m <Expression> must be a positive integer. A warning is output for values of 0 or less and the default
value of 1 is assumed.

m If <Expression> does not evaluate to a numerical value, an error occurs. Forward reference of an
absolute expression is also not allowed.

| fdatas, fdatad, fdatax

[Description Format]
|fdata<Size> <Expression>[,<Expression>, ,<Expression>]

[Function]
Defines only number of <Expression> of floating-point data areas whose size specified in <Size>. All
defined areas are initialized with the value specified in <Expression>.

[Explanation]
m Specify the size of the area to be allocated to one floating-point number by specifying one of the
following characters in <Size>.
S Area for 32-bit single-precision floating-point number
D Area for 64-bit double-precision floating-point number
X Area for 80-bit extended double-precision floating-point number
<Size> cannot be omitted.
<Expression> is an expression for initializing the defined area.
The evaluation result of <Expression> must be a floating constant.
When the evaluation result of <Expression> departs from the description rules of the floating constant
except for the integers, an error is output. Thus the expression value is regarded as 0.
m When an integer is described in <Expression>, a warning is output. Thus, the integer is converted to a
floating constant in accordance with <Size>.

22

Chapter 3 Assembly Language

When the floating-point number size of <Size> differs from <Expression> that, a warning is output.
Thus, the <Expression> value is converted to the size specified with <Size>.

The exponent size of the value specified with <Expression> exceeds the exponent size of the floating-
point data specified with <Size>, a warning is output on the exponent to be checked. Thus, the
exponent size of the value specified with <Expression> is converted to the maximum exponent can be
specified with <Size>.

3.5.5 Equ Directives

In assembly language, identifiers can be defined for the constants used in an assembly source program.

I equ

[Description Format]

|[<ldentifier> equ <Expression>

[Function]

Defines a constant used in all modules as <Identifier>.

[Explanation]

The value specified in <Expression> is set to <ldentifier>.

<Expression> must be an absolute expression. If not, a warning is output and the value becomes 0.
The value of a identifier set by this directive cannot be changed.

An error results if the equ directive is used to redefine a identifier defined by another directive.
<ldentifier> defined by this directive can be declared as a public symbol by a public directive.

3.5.6 Align Directives

I align

[Description Format]

[align <Expression>

[Function]

Aligns the location counter to a boundary value.

[Explanation]

If the value of the location counter for the current section is not at the boundary specified in
<Expression>, the value of the location counter is adjusted (rounded up) to the boundary value
specified in <Expression>.

Specify in <Expression> an absolute expression that will have been defined when the align directive
is encountered.

An align directive takes precedence over align in the section directive. That is, when
"align=<Expression 1>,<Expression 2>" is specified using the section directive, only the next location
counter encountered by this directive is adjusted to the value specified in <Expression> in the align
directive. The next or later location counter returns to the value as specified in the align of the section
directive.

23

Part 2 The Assembler

3.5.7 Org Directives

| org

[Description Format]
lorg <Expression>

[Function]
Changes the value of the location counter.

[Explanation]

m Changes the value of the location counter for the current section to the value specified in
<Expression>. That is, <Expression> is the address itself in the case of an absolute section, or the
offset from the starting address of the section in the case of a relocatable section.
<Expression> must be an absolute expression defined when this directive is encountered.

The value specified for the new location counter must be greater than the current location counter.

3.6 Control Instructions

Assembler control instruction is a instruction for controlling operation of assembler. Description form
attaches "$" to a head and describes "$" and a control instruction continuously. There is no differentiation
between uppercase and lowercase letters in an assembler control instruction.

3.6.1 File Include Function

| $include
[Description Format]
[$include "<Filename>"
[Function]

Reads in the assembly source file specified in <Filename>.

[Explanation]
m This instruction reads in and expands the assembly source file specified in <Filename> at the position
of the $include instruction.
m When the files are nested exceeding the assembler maximum limit, an error occurs.
When no path or a relocatable path is specified in <Filename>, the file is searched in order of the
following directories:
(1) The directory of the source file during the assembling processing.
(2) The directory specified with -1 option (when specified more than once, the paths are
searched in the order specified).
(3) The include directory under the directory specified in the environment variable
THOME900.

24

Chapter 3 Assembly Language

3.6.2 $maximum Control Instruction

I $maximum

[Description Format]
|$maximum

[Function]
CPU register mode is set up Maximum mode.

[Explanation]

m This instruction is certainly written at the head of an assembly source file.

m CPU register mode of each TLCS-900 Family CPU supports only Maximum mode. Minimum mode
is not supported.

25

Part 2 The Assembler

Chapter4 Assembler List File Format

Reading the machine instructions and corresponding parts source file

Location Object Ins Line Source Statement

[a] [ol[r]+[n] [11] [12] [s]

[a] This shows the offset value of the program within the assembler source file. After linking, the
memory allocation address is determined.

[o] This shows the machine instructions corresponding to the source program.
[r] R is displayed when a relocatable value is included.
[n] Shows the nest level of include.

[11] This shows the line number. When an include file is included, this shows the allocated line
number for each file.

[12] This shows the line number. This is a serial number that is not related to include files, etc.

[s] This shows the assembler source program.

Symbol Table Format

Symbol Category Value Attribute Cross_reference

[sym] [cillc2][c3] [Vl [all[a2][a3] [cr]

[sym] This shows the symbol name.

[c1] This shows the information type.

D data
C code
R romdata

[c2] This shows the displacement of the data to be allocated.

S small (tiny)
M medium (near)
L large (far)

[c3] This shows the information type.

LAB Label

VAR Variable name
NUM Numerical value
MOD Module name
SEC Section name

[V] This shows the offset within an assembler source file at which a symbol is allocated.

[al] This shows the address determination method.
R Relocatable
A Absolute

26

Chapter 4 Assembler List File Format

[a2]

[a3]

[cr]

This shows the symbol linkage. However, when this is a numerical value, it shows the size.

PUB public
EXT external
Blank local

Numerical value
Section size (When c3 is SEC)

This shows the section name. However, this is displayed only when the section is relocatable.

This shows the source line cross reference. <Num># shows the symbol definition line, and others
show referenced lines.

27

Part 2 The Assembler

Chapter5 Assembler Options

| -1 Specify Search Path for Include Files

[Description Format]
| -1<Path>

[Function]
Specifies the search path for include files.

[Explanation]

m This option specifies the search path for include files specified in include instruction. <Path> cannot
be omitted.

m This option can be specified multiple times. When multiple options specified, the path are searched in
the order in which the path are specified.

m Searches are performed according to the path specified in the -1 option when the filename is specified
with a relative path. When a path is specified with absolute path, the specified file is read in without
being searched.

m The file is searched in order of the following directories:

(1) The current directory which the source file during the assembling processing.

(2) The directory specified with -1 option (when specified more than once, the paths are
searched in the order specified).

(3) The include directory under the directory specified in the environment variable
THOME900.

| -J Recognize the Kanji Code (Japanese version only)

[Description Format]
[-J

[Function]
Recognizes the kanji code.

[Additional Note]
Do not use this option for English version.

| -Nb Select CPU Type

[Description Format]
|-Nb[<CPU Type>]

[Function]
Specifies CPU type of TLCS-900 Family.

[Additional Note]

m When <CPU Type> is ommited, it is considered that 0 was specified as <CPU Type>.
m When this option is ommited, it is considered that -NbO was specified.

m <CPU Type> are as follows:

28

Chapter 5 Assembler Options

Table 5-1 CPU Type

CPU Type Function
0 TLCS-900 series
1 TLCS-900/L series, TLCS-900/L1 series
2 TLCS-900/H series
3 TLCS-900/H1 series
I -0 Specify Optimization Level

[Description Format]
|-O[<Optimization Level>]

[Function]
Specifies the optimization level of output code with the Assembler.

[Explanation]

m When only "-O" option is specified without <Optimization Level>, it is recognized as "-O1" option
having been specified, and optimization is performed. When you do not carry out the optimization by
assembler, it is "-W" option of compiler driver and please pass "-O0" option to assembler.

Table 5-2 Optimization level
Level Function
0 No optimization with the Assembler
1 Optimization with the Assembler

I RY, Output Version Number

[Description Format]
|-V

[Function]
Outputs the Assembler version number to standard output.

[Explanation]

m When the assembler is activated, startup messages such as the assembler version number are output to
standard output.

m This option cannot be included in files for which -f option is specified.

I -XE Ignore Escape Sequence

[Description Format]
[-XE

[Function]
Interprets the backslash (\) not as the first symbol in the escape sequence but as a normal character.

[Explanation]
m Use this option when the assembler source file does not contain an escape sequence.

29

Part 2 The Assembler

| -e Create Error List File

[Description Format]
[-e <Filename>

[Function]
Outputs all error messages to one file as an error list file.

[Explanation]

m This option outputs all errors and warnings that occur during assembler execution to the file specified
in <Filename>.

m When a fatal error occurs, processing ends immediately and no error list file can be created.

| -f Read Option List File

[Description Format]

| -f<Fi lename>

[Function]
Reads the options from an option list file containing a startup option list.

[Explanation]

m Describes in advance in a text file the option to be specified and specified the file as <Filename>.
m |tis possible to describe options on multiple lines within an option list file.

m This option can be specified multiple times to specify multipl option list files.

| -g Create Debugger Information at assemble phase

[Description Format]

|-g[<Debug Level>]

[Function]
Outputs source level debugging information or symbolic debugging information to an object file.

[Explanation]

m Specify the Debug Level as a value of 0 or 1 in <Debug Level>.

m When only "-g" option specify without <Debug Level>, it is recognized as "-g0" option having been
specified.

m When this option is omitted, no debugging information is output to the object file.

Table 5-3 Debug Information

Level Function
0 Outputs source level debugging information.
1 Outputs symbolic debugging informations.
| -l Create an Assembler List File

[Description Format]

|-1[<Suboption>]

30

Chapter 5 Assembler Options

[Function]

Creates an assembler list file.

[Explanation]

An assembler list file is generated by the file name which changed the suffix of the source file name
to ".Ist".

The information output to the assembler list file is controlled according to <Sub Option>.

Multiple suboptions can be specified after option -I. However, "f" suboption which needs the
argument must be specified last.

The type of suboption are as follows:

Table 5-4 Suboptions of option -I

Suboptions Function
No suboption Outputs a basic format assembler list file.
f<Filename> Outputs by adding a name <Filename> to the assembler list file.
<Filename> cannot be omitted.
X Outputs cross reference information to an assembler list file.

I-o

Specify an Output Filename

[Description Format]

|-o<Filename>

[Function]

Specifies the filename of the output file.

[Explanation]

The output file is created with the name specified in <Filename>.

The suffix of the filename in <Filename> is not checked.

When this option is omitted, the output file is generated by the file name which changed the suffix of
the source file name to ".rel".

Assembly is stopped and an error occurs if the same filename is specified for an object file and a
source file.

I-w

Specify Warning Level

[Description Format]

[-w[<Warning Level>]

[Function]

Specifies the warning level.

[Explanation]

Specify the warning level as a number in <Warning Level>(0 - 1).

When this option is omitted, it is recognized as "-w1" option having been specified and all warnings
are output.

Specifying "-w" option without <Warning Level> is equivalent to option "-w0", and no warnings are
output.

31

Part 2 The Assembler

Chapter 6 Assembler Limitation

Table below shows the Limitation of the Assembler.

Table 6-1 Limitation of Assembler

Item Limitation
Number of lines of a source file no limitation
Number of characters of one line no limitation
Number of characters of absolute path 259 characters
Number of identifiers no limitation
Number of sections no limitation
Number of characters of identifier 1024 characters
Number of expressions in one directive db/dw/dp/dd/dI 99 times
Number of characters in one directive db/dw/dp/dd/dI 511 characters
Number of expressions in one directive dfb/dfw/dfp/dfd/dfl no limitation
Number of characters in one directive dfb/dfw/dfp/dfd/dfl 511 characters
Value of expressions in one directive dsb/dsw/dsp/dsd/dsl no limitation
Number of expressions in one directive fdatas/fdatad/ 99 times
Nest level of $include directive 8 levels
Number of $include instructions per translation unit 99 times
Number of times that option -1 can be specified 31 times

32

Part 3 The Linker

Chapter 7 The Linker

Chapter 7 The Linker

Input and Output Files

Input and Output Files

The suffixes used in the names of input and output files of the Linker are as below.

Table 7-1 Input and Output files of the Linker

Suffix File type Classification
rel Relocatable object files Input and output
lib Library files Input
Acf Link Command files Input
.abs Absolute object files Output
.map Map files Output

Relocatable object files
These object files, which includes relocatable object files, are input and output by the Linker.
These files are binary format files that complies with the IEEE695 object module format.

Library files
The library files consist of multiple relocatable modules collected into one by the librarian. The
required modules are extracted from these files during linking.
These files are binary format files that complies with the IEEE695 object module format.

Link command files
These text files contain entries specifying the linking sequence and allocation of memory. The
linker reads the link command file and performs the linking according to its content.

Absolute object files
The absolute object files are output by the linker. The internal and external symbols in these
files have absolute addresses assigned to them. And the files is convertible for the object format
which can be used by EPROM writer etc.
These files are binary format files that complies with the IEEE695 object module format.
When the error occurs during link processing, this file is not output.

Map files
The map files are text files containing information gained from the linking process. They
include information about sections after they have been linked, on symbols, and on errors.
When the fatal error occurs during link processing, this file is not output.

35

Part 3 The Linker

IChapter 8 Link Command File

8.1 Basic Link Command File

8.1.1 Reserved Words

Reserved words of the link command file are listed below. They are not available as user-defined
symbols. However, no error results and they are processed correctly if they are used as section names in
the object file. Reserved words do not differentiate between uppercase and lowercase letters.

addr align copy dsect len length memory
next noload org origin overlay sections sizeof

8.1.2 Identifiers

Identifiers consists of any combination of letters, numbers, period (.), and underscore (_). The first
character of an identifier must be except a number. The identifier is guaranteed up to the maximum
effective length of character. And the identifiers are classified predefined symbols, and user-defined
symbols.

Predefined Symbol

The predefined symbols are used as only memory names. Therefore, they are also called the predefined
memory names. Predefined symbols do not differentiate between uppercase and lowercase letters. See
Section 8.2.3, "Predefined Memory" for details of the predefined memory.

User-Defined Symbol

Identifiers described by assembler, such as section names and labels, are all user-defined symbols.
Also identifiers can be defined in a link command file.

Even if a reservrd word of assembly language is included in a link command file, the linker does not
output any error. User-defined symbols differentiate between uppercase and lowercase letters.

8.1.3 Expressions

Expressions consist of integer, and identifiers linked by operators.

Integer

The linker handles numeric values as unsigned 32-bit, and ignores the part exceeded. The linker does
not handle real numbers. The alphabet used for integer do not differentiate between uppercase and
lowercase letters.

Binary: Expressed as strings of 0s or 1s starting with Oy

Octal: Expressed as strings of numbers 0 to 7 starting with 0

Decimal: Expressed as strings of numbers 0 to 9 starting with other than 0
Hexadecimal: Expressed as alphanumeric strings consisting of numbers 0to 9, ato f, and

starting with 0x

36

Chapter 8 Link Command File

8.1.4 Location Counter

The location ccounter shows the current address. The value of location counter is shown in the period
(.) in the section definition part of a link command file.

The location counter is updated each time the linker allocates a section to a usable memory area.

The value of the location counter can be changed using an assign statement, described later. However,
note that the value of the location counter can not be decreased.

8.1.5 Operators and Their Order of Precedence

The operators have the same function as in C language. The available operators and their order of
precedence are as follows.

Table 8-1 Operators and Their Order of Precedence

Priority Operators

1 Parentheses (,)
2 Unary operators I~ -
3 Binary multiplication/division *
4 Binary addition/subtraction +, -
5 Shift <,>
6 Comparison <,>,<=,>=
7 Comparison ==,I=
8 Bitwise AND &
9 Bitwise OR |

10 Logical AND &&

11 Logical OR I|

12 Assign operators =,+=

8.1.6 Functional Operators

The functional operators can be used in a only output specification field of a section definition part,
and perform operations on defined sections and integer. See Section 8.3, "Section Definition Part" for
details of the section definition part.

| addr align next org sizeof |

I addr

[Description Format]
|addr(<Section_name>)

[Explanation]
m Returns the start address of the defined output section specified in <Section_name>.
m An error is occurs if the start address of the specified section cannot be determined.

I align

[Description Format]
|align(<Expression>)

37

Part 3 The Linker

[Explanation]

m Return the current location counter which is aligned by the value of <Expression>.

m When this operator is specified in an assign statement, returns the value of the current location
counter aligned by the value of <Expression>.

m When this operator is specified as the alignment specification of an output section, this operator
specifies the alignment of the output section.

| next

[Description Format]
[next(<Integer>)

[Explanation]
m The address which a section is not allocated within the defined memory, moreover, multiple of the
value specified by <Integer> are returns.

| org

[Description Format]

lorg(<Section_name>)

[Explanation]

m Returns the allocation address of the defined output section specified in <Section_name>.

m An error results if the allocation address of the specified section cannot be determined. The address of
the specified section is required to be previously specified with the allocation address specification
(org=<Expression>) in the section definition part. See Section 8.3.4, "Output Specification Field".

| sizeof

[Description Format]
| sizeof(<Section_name>)

[Explanation]
m Returns the size in bytes of the defined output section specified in <Section_name>.

8.1.7 Assign Statements

Assign statements are used when defining or re-defining public symbols.

[Description Format]

<User-defined Symbol> = <Expression>;
<User-defined Symbol> += <Expression>;

[Explanation]

m The semicolon (;) must terminate an assign statement.

m Assign statements can be described anywhere in the link command file.

m When allocating sections, the linker evaluates the expressions in the order in which they are written
and assigns the specified symbols to them.

m The value of the location counter can be adjusted by using assign statements in the section definition
part. However, the value of the location counter cannot be decreased.

38

Chapter 8 Link Command File

8.1.8

8.2

8.2.1

8.2.2

Comments

Comments can be written anywhere in the link command file. Comments are enclosed in /* and */.
Comments can also span two or more lines. Comments cannot be nested.

Memory Definition Part

Function of Memory Definition Part

By defining the address, size, and attributes at the memory definition part, the address space where
sections are allocated is defined. Sections cannot be allocated to other than the address space defined here.

When there is no memory definition in a link command file, the linker regards this as all memory
spaces being valid, and as having all attributes.

Memory Definition Part Format

[Description Format]

memory {

b

<Memory_name> [(<Attribute>)] : org=<Address> [,] len=<Size>
<Memory_name> [(<Attribute>)] : org=<Address> [,] len=<Size>

[Explanation]
<Memory_name>

<Attribute>

This is the name given to the defined memory area. The memory name can be a predefined
or user-defined memory name. User-defined memory names must not exceed the maximum
effective length of character. Memory names are used only by the linker, and are therefore

not passed to the output file.

Specify the attribute of the memory area to define.

R Readable
W Writable

X Executable
| Initializable

<Attribute> differentiate between uppercase and lowercase letters.

If specification is omitted, it will be regarded that specify all the attributes of "R", "W", "X",
and "I".

The linker initializes any empty area when it exists in a section allocated to a memory area
for which the "I" attribute is specified. See section 8.3.7 "Padding Field" for details of
initialization.

Table below shows the relationship between the types of sections specified in the assembly
language section directive and the memory attribute specified in the memory definition part.

Table 8-2 Section Type and Required Memory

Section type Required memory attribute
data RW
romdata R
code RX

39

Part 3 The Linker

The linker checks the attributes when allocating a section to a memory space. If not
corresponding memory attribute has been specified, an error occurs. For example, the "R"
(readable) and "X" (executable) attributes are required for memory to which a CODE
section is allocated.

<Address> Specify the start address of the memory area to define with 32-bit unsigned integer.
You can also use "origin™ in place of "org" to specify "origin=<Address>".

<Size> Specify the size in bytes of the memory area to define.
You can also use "length™ in place of "len" to specify "length=<Size>".
Delimit <Address> and <Size> with a comma or space.

8.2.3 Predefined Memory

If predefined memory name used in memory name, sections are allocated automatically to memory
area corresponding to section directive in an assembler source file unless otherwise specified in the
section definition part. Predefined memory have the following meanings.

code.m, code.l
A code area is an area to which machine instructions are allocated. Sections specified with
the "code" type in the assembly language section directive are assigned to this memory area.

data.s, data.m, data.l
A data area is an area to which data with values that change during program execution are
allocated. A data area has the "RW" attributes. Sections specified with the "data" type in
the assembly language section directive are assigned to this memory area.

romdata.m, romdata.l
A romdata area is an area to which data (constants) with values that do not change during
program execution are allocated. A romdata area has the "R" attribute. Sections specified
with the "romdata” type in the assembly language section directive are assigned to this
memory area.

The predefined memory "data.s" corresponds to displacement "small" of the assembly language section
directive. Similarly, the "code.m", "data.m", and "romdata.m" corresponds to "medium", and the "code.I",
"data.l", and "romdata.l" corresponds to "large". The section type specified in the assembly source
program must match the attribute of the predefined memory to which it is assigned. For relocatable
sections, both section displacement and type must match. For absolute sections, the section type must
match.

Table 8-3 Section type and Predefined memory name

Section type Displacement Predefined memory name
small data.s
data medium data.m
large data.l
medium romdata.m
romdata
large romdata.|
medium code.m
code
large code.l

40

Chapter 8 Link Command File

Displacement of Predefined Memory

The predefined memory can be defined in duplicate address, when the memory are same types and
different displacement. For example, section "data small" allocated to the area "data.s" defined in the
memory definition part, then section "data medium" can be allocated continuously after "data small" if
any area remains in "data.s". Also, user-defined memory can not be defined in duplicate address.

8.3 Section Definition Part

8.3.1 Function of Section Definition Part

The section definition part specifies the linking order of input sections and the allocation of them to
memory.

When the section definition part is omitted, the sections are linked in the input order, and are allocated.
At this time, sections with the same name are linked to contiguous memory. However, sections with the
same name must have the same attributes in all input files.

8.3.2 Section Definition Part Format

[Description Format]

sections {
<Qutput Section Name> [<Output Specification>] [<Attribute>]
{<Input Section Specification>}
[=<Padding>] [> <Output Memory>]

<QOutput Section Name> [<Output Specification>] [<Attribute>]
{<Input Section Specification>}
[=<Padding>] [> <Output Memory>]

3

[Explanation]
<Output Section Name>
Specify the output section name.

<Output Specification>
Specify the allocation address, alignment, and size of the output section.

<Attribute> Applies a special attribute to the output section. This specification can be omitted.

<Input Section Specification>
Specify the input section name.

<Padding> Specify the numerical value to initialize padding.

<Output Memory>
Specify to allocate the output section to the user-defined memory area defined in the
memory definition.

8.3.3 Output Section Name Field

The section name for the output section is specified in the output section name field. The output
section name can specify the same name as the input section name.

41

Part 3 The Linker

8.3.4 Output Specification Field

The allocation address, alignment, size, and start address of the output section are specified in the
output specification field.

[Description Format]
|[<Allocation Address>][<Alignment>][<Size>][<Start Address>]

[Explanation]

<Allocation Address>
Specify the address in memory to which the output section will be allocated.

<Alignment>
Specify the alignment for adjusting the allocation of the output section.

<Size> Specify the minimum size of the output section.

<Start Address>
The start address is the reference address to be used when applying an absolute address to a
symbol. The execution address is specified as the start address when the area storing
objects is different from the area used at the execution. For example, when the variables
with initial values used, initial value allocate to ROM and variables allocate to RAM. In
this case, the address allocated body of variables will be the start address.

m All specifications are optional. You can also specify the memory name to be applied without
specifying the allocation address. See 8.3.8 "Output Memory Field" for details of specifying the
output memory.

Allocation Address Specification

| org

[Description Format]
lorg = <Expression>

[Function]
Specify the memory allocation address of the output section.

[Explanation]

m When this directive is omitted, the allocation address and the start address are the same.

m The input section types (code, data, and romdata) and the type of memory of the memory definition
which the allocation address corresponds do not have to match.

m The allocation address and alignment cannot be specified at once.

Alignment Specification

| align

[Description Format]
lalign = <Expression>

42

Chapter 8 Link Command File

[Function]
Specify the memory allocation address of the output section, the address is multiple of the value
specified in <Expression>

[Explanation]
m <Expression> specifies the value which can be expressed with power-of-2.
m The allocation address and alignment cannot be specified at once.

Size Specification

I len

[Description Format]
[len = <Expression>

[Function]
Specify the size of the output section.

[Explanation]
m When the value of <Expression> is greater than the total size of the input sections, the size of the
output section is the value specified in <Expression>.

Start address Specification

I addr

[Description Format]
|addr =<Expression>

[Function]
Specify the start address of the output section.

[Explanation]
m Specify the start address when the allocation address and the start address of the output section are not
the same.
When this directive is omitted, the allocation address and the start address are the same.
The start address must be within the area defined in the memory definition.
Specification of the start address is described after the specification of the allocation address.

8.3.5 Attribute Field
The attribute field is specified when a special attribute is applied to the output section. There are four
attributes: DSECT, COPY, NOLOAD, and OVERLAY. Table below shows the differences between
sections with and without these attributes.
Normally, these attributes do not need to be applied to an output section.

43

Part 3 The Linker

Table 8-4 Attribute Field
Attribute Obiject data Overlap
None (normal) Output No
DSECT Not output Yes
COPY Output Yes
NOLOAD Not output No
OVERLAY Output Yes

IDSECT

[Description Format]

| (DSECT)

[Explanation]

Specify the dummy section attribute (no body) for the output section. Because, practically, no actual
memory is allocated to a section with the DSECT attribute, it can overlap with other sections.

Also, dummy sections can be allocated to memory areas not declared in the memory definition.

|COPY

[Description Format]

| (COPY)

[Explanation]
The COPY attribute is identical to the DSECT attribute except that object data is output.

|NOLOAD

[Description Format]

| (NOLOAD)

[Explanation]
sections with the NOLOAD attribute are identical to normal sections except that no object data is
output.

IOVERLAY

[Description Format]

| (OVERLAY)

[Explanation]

m Sections with the OVERLAY attribute are allocated to memory in the same way as hormal sections,
and object data is output.

m OVERLAY sections differ from normal sections in that these can overlap other sections. Normal
sections cannot be allocated to an area to which another section has already been allocated.
OVERLAY sections, however, can be.

m The allocation address must be specify for OVERLAY sections.

44

Chapter 8 Link Command File

8.3.6 Input Section Specification Field

In the input section specification field, specify file names and input section names included in the file.
With the linker, input sections in the specified file are linked. Note that the input sections which are not
specified in the input section specification field, the output sections will automatically be created with the
same name as the input sections. Thus, if two or more input sections have the same name, they will be
linked into one in the order in which they appear.

[Description Format]
{ <Filename>(<Section_name>...)

<Filename>(<Section_name>...)}

[Explanation]

m Specify a relocatable object file containing the sections to be linked in <Filename>.

m Anasterisk (*) can be specified in place of <Filename>, in which case all relocatable object files and
library files as target for linking are processed.

m Specify section names to be linked in <Section_name>. The specified section types (code, data,
romdata) of the input sections must match. The output section has the same types as the input sections
provided special attributes such as DSECT are not specified.

m Multiple sections in the same file can specify in <Section_name>. When specifying multiple sections,
delimit the section names with spaces.

m When <Section_name> is omitted, all sections in the specified <Filename> are linked.

An error is also output and the specification is ignored, when an absolute section is specified as an
input section in the section definition part.

8.3.7 Padding Field

The empty areas between input sections that arise when the input sections are linked is called padding.
The linker can initialize the padding with the specified value.

[Description Format]
|=<Numerical Value>

[Explanation]

m Specify a value for initializing padding in <Numerical value>.

m Specify a 2-byte numerical value in <Numerical Value>.

m The area is initialized in the order high byte, low byte from the start address for padding regardless of
whether the start address is an odd or even. That is, when the padding area is an odd byte, the last byte
is initialized as the high byte.

m When the padding specification is omitted, the padding will be initialized with the value specified by
-F option when the linker is activated. When the -F option is also omitted, initialization is done with 0.

m <Numerical Value> can be specified to only memory areas with the "I" attribute. An error results if
<Numerical Value> is specified for a memory area without the "I" attribute. In this case, the
<Numerical VValue> specification is ignored.

8.3.8 Output Memory Field

The output memory field is specified so that the output section is allocated to memory defined in the
memory definition part. At this time, the RWXI attributes of the memory area are checked against those
of the section. If they conflict, an error occurs.

45

Part 3 The Linker

[Description Format]
[> <Memory_name>

[Explanation]

m The output section is allocated to the memory area specified in <Memory_name>.

m <Memory_name> is the name of a memory area defined in the memory definition part.

m The linker performs allocation to a predefined memory automatically according to the section types,
S0 it is not necessary to specify predefined memory names in <Memory_name>.

m This specification is ignored, when you specify with the allocation address specification(org) or the
start addresss specification(addr) in output specification field.

8.4 Symbol Definition Part

The link command file can define the symbols. The identifier referred to by ROM/RAM transfer in a
startup file is defined here.

8.5 Incremental Linking

The linker can leave the output files as relocatable state. The object file resulted of linking can become
an input file for linking target again, thus, linking can be performed incrementally. This function is called
the incremental linking.

8.5.1 Processing in Incremental Linking

In incremental linking, the input sections are linked to create an output section, and the result of
resolving identifier address is output to a relocatable object file. Searching library, allocation to the
memory area, and reallocation of relative expression is not performed.

Unlike in the case of normal linking, it is necessary to specify following using incremenal linking.

Specify option -r.
It is necessary to specify output file name with option -o.
The memory definition part described in a link command file is ignored. Allocation to the memory
area is not performed in incremental linking.

m Specify only about section linking in the section definition part. When the memory allocation of the
output section is specified, an error is output.

m Assignment statement is not available.

Example of Incremental Linking

[Command Line]
| tulink samplel.lcf testa.rel testb.rel testc.rel

[Link Command File : samplel.lcf]

MEMORY {
data.m : org=0x1000 1en=0x2000
code.m : org=0x8000 len=0x7000

}
SECTIONS {
OUT_CODE : { *(code_sec) }

46

Chapter 8 Link Command File

OUT_DATA : { *(data_sec) }

b

Figure 8-1 Sample of Normal Link Command File

To use two-step incremental linking to create the identical file which created using the above link

command file (Figure 8-1), the link command files describe as follow.

[Command Line]

| tulink -r -o testrel.rel sample2-1.Icf testa.rel testb.rel

[Link Command File : sample2-1.lcf]

/* Cannnot specify the memory definition part */

SECTIONS { /* Specifies only linking section */
R _CODE : { *(code_sec) } /* Link code section */
R_DATA : { *(data_sec) } /* Link data section */

Figure 8-2 Using link command file for 1st linking

The linker links "code_sec" sections in the relocatable object files "testa.rel” and "testb.rel" to create

section "R_CODE", links "data_sec" sections to create section "R_DATA", outputs them to the file
"testrel.rel".

[Command Line]

| tulink sample2-2.1cf testrel.rel testc.rel

[Link Command File : sample2-2.Icf]

MEMORY { /* Specify the memory definition part */

data : org=0x1000 len = 0x2000
code : org=0x8000 len = 0x7000
}
SECTIONS { /* Section definition part */

OUT_CODE : { *(R_CODE) *(code_sec) }
/* Link code sections */

OUT_DATA : { *(R_DATA) *(data_sec) }
/* Link data sections */

Figure 8-3 Using link command file for 2nd linking

testrel.rel which is created first and testc.rel which created next, are linked, create an absolute object

file. The section is connected R_CODE and code_sec, and R_DATA and data_sec too.

The creating file using two-step incremental linking (Figure 8-2,8-3) is almost the same as the file
using one-step linking (Figure 8-1).

47

Part 3 The Linker

Chapter 9 Linker Map File Format

Command file
The contents of Link Command Files are output as is.
If error occurs, the error message is output after the contents of Link Command File.

Input files
This displays the input file names and the module names to be linked. Also displayed here is which
libraries are linked.

Link map
Displays an image of a program's allocation on actual memory. Program allocation is specified by a
Link Command File.

Memory This shows the memory name defined by the memory definition part of a Link
Command File.

Out-sec This shows the output section name defined by the section definition part of a Link
Command File.

Attri One of CODE, DATA, or ROMDATA is displayed, and these respectively show
code section, data section, and romdata section.

Base This shows the start address of an output section.
Length This shows the output section size.

In-sec(In-file)
This shows the input section name, and shows the name of the file in which the
input section exists.

Information
This show the following information.
NORMAL normal section
NORMAL:A absolute address section
Gap empty area
DUMMY DUMMY section
NOLOAD NOLOAD section
COPY COPY section

OVERLAY OVERLAY section

Multiply defined symbols
This displays the multiply defined external definition symbol name and reference file name.

Unresolved external symbols
This displays the unresolved external reference symbol name and reference file name.

Symbol table for <Output File Name>
This displays information related to identifier names that exist in an absolute object file.

48

Chapter 9 Linker Map File Format

Symbol This shows the identifier name.
Address This shows the address at which the identifier is allocated.
In-sec This shows the name of the input section in which the identifier exists.

Cross-reference
This shows which identifiers are cross referenced with what modules

49

Part 3 The Linker

Chapter 10 Linker Options

| -F Specify Fill Value for Empty Area in Output Section
[Description Format]
|-F<value>
[Function]

Fills the empty areas in an output section with the specified value.

[Explanation]

m <Value> is specified as a 2-byte numerical value.

m The empty area is filled in the order high byte, low byte of the specified <Value> from the padding
start address.
When the empty area is an odd byte, the last byte is initialized with the high byte of <Value>.
This option becomes effective is only the memory area which specified 'I' attribute in the memory
definition of the link command file. When the memory attribute specification is omitted, the memory
area have 'I' attribute by default.

| -L Specify Search Path for Input Files

[Description Format]
|-L<Path>

[Function]
Specifies the search path for input files.

[Explanation]
m The Linker searches for object files, library files and link command files according to the <Path>
specified by this option.
<Path> cannot be omitted.
m This option can be specified multiple times. When specified more than once, the paths are searched in
the order in which the paths are specified.
m When the relative path is specified as <Path>, it is searched as a relative path from the directory
which executed the linker.
m The file is searched in order of the following directories:
(1) The current directory.
(2) The directory specified with option -L (when specified more than once, the paths are
searched in the order specified).
(3) The lib directory under the directory specified in the environment variable THOME900.

| RY, Output Version Number

[Description Format]
[-V

[Function]
Outputs the Linker version number to standard output.

50

Chapter 10 Linker Options

[Explanation]
m When the linker is activated, startup messages such as the linker version number are output to
standard output.

I -e Create Error List File

[Description Format]
|-e<Filename>

[Function]
Outputs all error messages to one file as a error list file.

[Explanation]

m This option outputs all errors and warnings that occur during linker execution to the file specified in
<Filename>.

m When a fatal error occurs, processing ends immediately and no error list file can be created.

I -g Create Debugger Information at link phase

[Description Format]
|-g<Sub Option>

[Function]
Outputs debugging information to an absolute object file.

[Explanation]

m This option outputs debugging information in the relocatable object file to an absolute object file.
m When this option is omitted, debugging information is not output to an absolute object file.

m When option -g is specified with the driver, this option is transferred to the linker automatically as

option -ga.
Table 10-1 Sub Option for option -g
Sub Option Function
a Outputs debugging information of all input files specified as the linker.

m <filename> Outputs debugging information of the input file specified <filename>.
This option can specify multipule. <filename> can not be omitted.

I -| Create a Link Map File

[Description Format]
| -1<Suboption>

[Function]
Creates a map file.

[Explanation]

m The map file is generated by the file name which changed the suffix of the first specified source file
name to ".map".
The information output to the link map file is controlled according to <Sub Option>.

m Multiple suboptions can be specified after option -I. However, 'f' suboption which needs the argument
must be specified last.

51

Part 3 The Linker

The type of suboption are as follows:

Table 10-2 Suboptions of option -I

Suboptions Function

No suboption Outputs a basic format map file.

a Outputs the link information of external variable and local variables to a
map file.

f<Filename> Output a map file which is named <Filename>.

S Output the link information of static identifier to a map file. -g option is
required at the time of compile.

X Output cross-reference information to a map file.

|-o

Specify an Output Filename

[Description Format]

|—o<FiIename>

[Function]

Specifies the filename of the output file.

[Explanation]

The output file is created with the name specified in <Filename>.

The suffix of the filename in <Filename> is not checked.

When this option is omitted, the output file is generated by the file name which changed the suffix of
the first specified input relocatable object file name to ".abs".

This option must be specified when creating a relocatable object file by specifying option -r.

|—r

Perform Incremental Linking

[Description Format]

[-r

[Function]

A relocatable object file is created by incremental linking.

[Explanation]

This option is used when creating a new relocatable object file by linking a relocatable object file with
another relocatable object file.

When this option is specified, also specify the name of the output file using the option -0. An error
occurs if the output filename is not specified.

The input sections are linked according to the section definition part in the link command file. The
mapping address is not, however, defined.

When this option is specified, a warning message is output and the memory definition part is ignored
if one exists in the link command file.

The library files are not linked when this option is specified by the driver.

|-u

Link Undefined Symbol

[Description Format]

| -u<Symbol>

52

Chapter 10 Linker Options

[Function]
Forcibly links a specified <Symbol>.

[Explanation]

m This option is used to force a module link. It is effective when linking a module from a library file, for
example.

m This option can be specified multiple times.
Do not put in a blank between -u and <Symbol>.

I -W Specify Warning Level

[Description Format]
[-w[<Warning Level>]

[Function]
Specifies the warning level.

[Explanation]

m Specify the warning level as a number in <Warning Level>(0 - 1).

m When this option is omitted, this is recognized as option -w1 having been specified and all warnings
are output.

m Specifying option -w without <Warning Level> is equivalent to option -w0, and no warnings are
output.

53

Part 3 The Linker

Chapter 11 Linker Limitation

Table below shows the Limitation of the Linker.

Table 11-1 Limitation of Linker

Item Limitation
Number of characters of section name 1024 characters
Number of characters of memory name 1024 characters
Number of characters of identifier 1024 characters
Number of times that option -L can be specified 8 times

54

Part 4 The Macro Preprocessor

Chapter 12 The Macro Preprocessor

Chapter 12 The Macro Preprocessor

12.1 Macro Preprocessor Overview

Main function of the Macro Preprocessor is to substitute character strings. For this function, Macro
Preprocessor provides a macroprocess function and preprocess function. A processing target of Macro
Preprocessor is a source file which is described using Macro Preprocessor language. A part except it
merely is just copied to an output file.

Firstly, Macro Preprocessor processes preprocessing directive. After that, it processes macroprocessing
directive.

12.2 Input and Output Files

m Table below shows the suffixes used in the names of input and output files of Macro Preprocessor.

Table 12-1 Input and Output files of Macro Preprocessor

Suffix File type Classification
.mac Macro preprocessor source file Input
.asm Assembly source file Output
.med Macro preprocessor list file Output

m Macro preprocessor source file
This is an assembly source file that is described using Macro preprocessor language.

m Assembly source file
This is an assembly source file which processing result of Macro Processor.

m Macro preprocessor list file
This is a list file which contains the assembly source file as result of Macro preprocessor,
description of each function for Macro preprocessor and expansion form, symbol list and cross
references.

57

Part 4 The Macro Preprocessor

Chapter 13 Macro Preprocessor Grammar

13.1 Character Set

The following list shows the characters that can be used when writing a macro preprocessor source file.

Character set:

English alphabets | decimal digits | graphic characters | new-line space character
Graphic characters:

I"#8% &' ()*+,-./:;<=>?2[\]1" _{|}~-@

In addition to the characters listed above, other characters can be used in comments and text. However,
Macro Preprocessor ignores the escape sequence.

13.2 Character String

Macro Preprocessor recognizes following as character string.
[Character sequence which is put in double quotation.
[Character sequence which is put in parentheses.
When no character which is put in double quotation or parentheses, Macro preprocessor recognizes
empty character string.

13.3 Identifier

Identifier consists of any combination of alphabets (A-Z a-z), numbers (0-9), and underscore(_). And
the identifier is classified reserved words, defined macros, and user-defined symbols.

The first character of an identifier must be an alphabet or underscore.

m The identifier is guaranteed up to the maximum effective length of character. If it exceeds the
maximum effective length of characters, exceeded part is truncated, and warning message is output.

m The Macro Preprocessor distinguishes between the uppercase and lowercase letters which are used for
a identifier. However, it does not distinguish neither the uppercase nor lowercase letters for the
reserved words.

Reserved Word

Reserved words get ready for preprocess function and macroprocess function.

Preprocess function

define else elif endif error
if ifdef ifndef include 1line undef

58

Chapter 13 Macro Preprocessor Grammar

Macro function

assign chop define delayslot else
elseif endif endm endr endres
endw egs eval exit ges

gts hi if include labels

len les lo local Its

macro membase memoffset msg_stderr msg_stdout
nes nextreg num operator_sign

regtype repeat restrict _macro set substr
trigger typeof variable while

Defined Macro

The following table lists the defined macro.

| __TRUE_ _ __FALSE___ __900__ __TOSHIBA_ _

__TRUE__ . It is used with the return value of control macro. As for this macro, the value of
1 is defined.

__FALSE__ : Itis used with the return value of control macro. As for this macro, the value of
0 is defined.

_ 900 : The value of 1 is defined when the target MCU is TLCS-900.

__TOSHIBA__ : The value of 1 is defined, when the target MCU is TOSHIBA MCU. This
macor is not defined when conditions are not satisfied.

User-Defined Symbol

User-defined symbol is a identifier which is defined by user.

13.4 Constants

Macro Preprocessor recognizes two types of constant.

Numeric Constants

Macro Preprocessor recognizes integer number as 64 bit length, and calculates the number as signed
integer number internally. However, the integer number is output to file by masking to 32 bit length. If
calculated result exceeds 32 bit length, Macro Preprocessor outputs a warning message and truncates
exceeded part. The alphabet used for integer do not differentiate between uppercase and lowercase letters.

Binary: Expressed as strings of Os or 1s starting with Ob or Oy

Octal: Expressed as strings of numbers 0 to 7 starting with 0

Decimal: Expressed as strings of numbers 0 to 9 starting with other than 0
Hexadecimal: Expressed as alphanumeric strings consisting of numbers0to 9, and a to f

and starting with Ox

Character Constants

Character constants are expressed with enclosing in single-quotes ('). Macro Preprocessor recognizes
4 bytes as character constants.

59

Part 4 The Macro Preprocessor

13.5 Expressions

Macro Preprocessor calculates expression as signed 64 bit length internally. The integer number is
output to file by masking to 32 bit length. If calculated result exceeds 32 bit length, Macro Preprocessor
outputs a warning message and truncates.

Operator Precedence

The operators have the order of precedence in using. The tables below shows the operator precedence.

Table 13-1 Operator Precedence

Precedence Operator
1 Unary Operators (~, -, +,!)
2 Multiply, Divide and Modulo (*, /, %)
3 Add and Subtract (+, -)

4 Shift Operation (>>, <<)

S Comparison (>, <, >=, <=)
6 Comparison (==, =)

7 Bitwise And (&)

8 Bitwise Or ()

9 Bitwise Exclusive Or (")
10 Logical And (&&)

11 Logical Or (]|)

13.6 Trigger Character

The symbol that will instruct the Macro Preprocessor to process a macro is a trigger character. The
trigger character is a question mark '?".

13.7 Comments

The comment starts with a semicolon (;) or two consecutive slashes (/') and extends to the end of the
line. When block comment is, enclose multiple lines by "/*" and "*/".
Only the line comment expressed with a semicolon is output to the output file.

13.8 Line Splice

When a new line character immediately follows the backslash (\), the backslash and the new line
character has to be ignored and treat the next line as part of the previous line. It is used to divide a long
line.

60

Chapter 14 Preprocess Functions

Chapter 14 Preprocess Functions

The Macro Preprocessor can use preprocessing directives same as C language. The directives are as

follows.

#if #ifdef #ifndef #elif #else #endif
#define #undef

#include

#line #error # Ht

61

Part 4 The Macro Preprocessor

Chapter 15 Macroprocess Functions

15.1 Operators

The table below shows the operators of each function.

Conditional Macro

These are macros which processes according to conditions.

Table 15-1 Conditional Macros

Operator

Function

Break expanding according to condition

exit
if

Process according to condition

repeat

Repeat according to specified number of
times

while

Repeat according to condition

Replacement Macro

These are macros for character string definition.

Table 15-2 Replacement Macros

Operator

Function

macro

Define replacement string

restrict_macro

Suppress replacement

Numerical Macro

These are macros which controlled numeric number.

Table 15-3 Numerical Macros

Operator

Function

eval

Evaluate expression

variable

Assign value

String Control Macro

These are macros which controlled string.

Table 15-4 String Control Macros

Operator

Function

assign

Divide string

chop

Delete white space

eqs

Stringl == String2

ges

Stringl >= String2

gts

Stringl > String2

len

Return string length

les

Stringl <= String2

Its

Stringl < String2

nes

Stringl != String2

substr

Extract substring from character string

62

Chapter 15 Macroprocess Functions

Particular Macro
Table 15-5 Particular Macro
Operator Function
trigger Change trigger character

15.2 Conditional Macro

I exit

[Description Format]
[?exit [(<Expression>)]

[Function]
Break expanding macros.

[Explanation]

m In case of evaluating result of <Expression> is true, abort text expanding process by ?repeat, ?while,
and macro expanding process by ?macro.

m In case of omitting <Expression>, it means true.

[Example]

?macro macname argl
Macro_body1l
Macro_body2
?exit // abort expanding
Macro_body3 // do not expand
Macro_body4 // do not expand
?endm

macname 1 // call

==== Result ====
Macro_body1
Macro_body2

[Description Format]

?1T (<Expression>)
<Text 1>

[?elseif (<Expression >)
<Text 2>]

[?else
<Text n>]

?endif

[Function]
Perform condition judgment processing.

[Explanation]

m In case of evaluating result of <Expression> is true, expanding <Text n>.

m In case of evaluating result of <Expression> is false and exists ?else statement, <Text n> of ?else is
expanded.

m This function can be nested to 32 level with other function.

63

Part 4 The Macro Preprocessor

[Example]

?variable varl, 1

?if(?varl == 1)
Process_A
?elseif(?varl == 2)
Process B
?else
Error_pattern
?endif

==== Result ====
Process_A

repeat

[Description Format]

?repeat (<Expression>)
<Text>
?endr

[Function]
Repeat expanding <Text> according to <Expression>.

[Explanation]

m Repeat expanding <Text> for <Expression> times.

m A negative number cannot be specified as <Expression>.

m This function can be nested to 32 level with other function.

[Example]

?repeat(3)
Repeat_body

?endr

==== Result ====
Repeat_body
Repeat_body
Repeat_body

while

[Description Format]

?while (<Expression>)
<Text>
?endrw

[Function]
Repeat expanding <Text> according to condition.

[Explanation]
m Repeat expanding <Text>, while <Expression> is true.
m This function can be nested to 32 level with other function.

[Example]

| ?variable varl, 3

64

Chapter 15 Macroprocess Functions

?while(?varl > 0)

Repeat_body

?variable varl, ?varl - 1 // decrement
?endw

==== Result ====
Repeat_body
Repeat_body
Repeat_body

15.3 Replacement Macro

I macro

[Description Format]

Definition

?macro <ldentifier> [<Paremeter> [,<Paremeter>[<Paremeter List>]]]
[labels <Label> [,<Label List>]]

?endm

<Text>

Call

[<ldentifier> [<Argument List>]

[Function]

Define <Identifier> for expanding <Text>.

[Explanation]

<ldentifier> which defined by ?macro can not redefine using ?macro.

?macro can redefine <ldentifier> which is declared using ?variable, ?assign.

<Parametert> is described parameter using in <Text>. <Parameter> can be specified 127 times.
Separate multiple <Parameter> by comma.

<Label> is described labels using in <Text>. <Label> can be specified 64 times. Separate multiple
<Label> by comma.

Unique number is added to <label>, when <Text> is expanded. Added number is decimal number
from 000 to 999.

Separate multiple <Argument List> by comma.

In ?restrict_macro range, expanding of <identifier> is suppressed.

Recursive pattern is not expanded.

Function macro cannnot be describe as nest definition, when macro define.

[Example]

?macro macname argl, arg2
labels labl, lab2
Macro_body
?argl, ?arg2
?labl
?lab2
?endm

macname 1, 3 // call
macnhame 2, 4 // call

==== Result ====

65

Part 4 The Macro Preprocessor

Macro_body
1, 3
1ab1000
1ab2000
Macro_body
2, 4
l1ab1001
1ab2001

restrict_macro

[Description Format]

?restrict_macro
<Text>
?endres

[Function]
Suppress expanding symbol which is defined by ?macro.

[Example]

?macro macnhame argl
Macro_body ?argl
?endm

?restrict_macro

macname 1 // Suppress expanding
macname 2 // Suppress expanding
?endres

macname 3 // Expanding

==== Result ====
macname 1
macname 2

Macro_body 3

15.4 Numerical Macro

| eval

[Description Format]

|?eval (<Expression>)

[Function]
Evaluate <Expression>.

[Explanation]
m Return the result as decimal number.

[Example]

| 2eval(1 + 2 * 3 & 4) /7 4

66

Chapter 15 Macroprocess Functions

I variable

[Description Format]
m Definition
[?variable <ldentifier>, <Expression> |

m Call
[?<ldentifier> |

[Function]
Assign evaluated value of <Expression> to <ldentifier>.

[Explanation]
m <lIdentifier> defined by ?variable can redefine by ?variable.
m Return the result as decimal number.

[Example]
?variable a, 1 - 1 && 1
?a // 0

15.5 String Control Macro

I assign

[Description Format]
|?assign (<ldentifier 1>,<ldentifier 2>) ([<Character String>])

[Function]
Assign <Character String> to <ldentifier 1> and <Identifier 2>.

[Explanation]

m <Character String> from beginning to first comma is assigned to <identifier 1>. Remaining
<Character String> is assigned to <identifier 2>.

m If comma doesn't exist in <Character String>, <Character String> is assigned to <identifier 1>.

[Example]

?assign(strl, str2)(AAA, BBB)
?strl // expand to ' AAA™
?str2 // expand to " BBB "

?assign(strl, str2)(*" AAA, BBB ')
?strl // expand to ' AAA™
?str2 // expand to " BBB "

I chop

[Description Format]
[2chop ([<Character String>])

[Function]
Delete white spaces in head and tail of <Character String>.

67

Part 4 The Macro Preprocessor

[Explanation]
m In case of specifying particular character (exp parenthesis), use double quotation type in <Character
String>.

[Example]

2chop(AAA BBB CCC) /7 AAA BBB CCC
2chop(*" (AAA BBB CCC) ') // (AAA BBB CCC)

| eqs

[Description Format]
|?egs ([<String 1>],[<String 2>])

[Function]
Compare <String 1> and <String 2>.

[Explanation]
m [f <String 1> is equal to <String 2>, return __ TRUE__. Otherwise, return __ FALSE .
m In case of specifying particular character (exp parenthesis), use double quotation type in <String 1> or

<String 2>.
[Example]
?eqs(AAA,AAA) // __TRUE_ _
?eqs(AAA, AAA) // __FALSE_ _

2eqs("AAA","AAA™) /7 TRUE_

2eqs("AAA", “AAA™) // _TRUE__

| ges

[Description Format]
[?ges ([<String 1>],[<String 2>])

[Function]
Compare <String 1> and <String 2>.

[Explanation]
m [f <String 1> is more than or equal to <String 2>, return __ TRUE__. Otherwise, return

__FALSE__.
m In case of specifying particular character (exp parenthesis), use double quotation type <String 1> or
<String 2>.
[Example]
?ges(AAA,AAA) // __TRUE__
?ges(AAA, AAA) // __TRUE__
?ges(AAA,AAA) // __FALSE
?ges(AAAT, TAAA'™) // __TRUE__
?ges("AAAT, T AAA™) // __TRUE

?2ges(*" AAA™, "AAA™) // _ FALSE__

68

Chapter 15 Macroprocess Functions

I gts

[Description Format]
[?29ts ([<String 1>],[<String 2>])

[Function]
Compare <String 1> and <String 2>.

[Explanation]
m If <String 1> is more than <String 2>, return __ TRUE__. Otherwise, return __ FALSE__.
m In case of specifying particular character (exp parenthesis), use double quotation type <String 1> or

<String 2>.
[Example]
?gts(AAA,AAA) // __FALSE__
?gts(AAA, AAA) // __TRUE___
?gts(AAA,AAA) // __FALSE_ _

2gts(AAA", “AAA™) // _ FALSE_
2gts("AAAT, " AAA™) // __TRUE _
2gts(" AAA™, "AAA") // _ FALSE

I len

[Description Format]
[?len ([<Character String>])

[Function]
Return length of <Character String>.

[Explanation]
m In case of specifying particular character (exp parenthesis), use double quotation type <Character
String>.

[Example]

21en(ABCDE) 775
?2len(ABCDE) // 7

?len(ABCDE'™) // 5
?len("ABCDE") // 5

I les

[Description Format]
[?les ([<String 1>],[<String 2>])

[Function]
Compare <String 1> and <String 2>.

[Explanation]

m If <String 1> is less than or equal to <String 2>, return __ TRUE__. Otherwise, return __FALSE__.

m In case of specifying particular character (exp parenthesis), use double quotation type <String 1> or
<String 2>.

69

Part 4 The Macro Preprocessor

[Example]
?1es(AAA,AAA) // __TRUE__
?les(AAA, AAA) // __FALSE__
?les(AAA,AAA) // __TRUE__

2les("AAA", “"AAA™) // _ TRUE
2les("AAAT, " AAA™) // _ FALSE
2les(" AAA™, "AAA") // __TRUE _

| Its
[Description Format]
[21ts ([<String 1>],[<String 2>])
[Function]
Compare <String 1> and <String 2>.
[Explanation]
m If <String 1> is less than <String 2>, return __ TRUE_ _. Otherwise, return __FALSE__.
m In case of specifying particular character (exp parenthesis), use double quotation type <String 1> or
<String 2>.
[Example]
?1ts(AAA,AAA) // __FALSE__
?1ts(AAA, AAA) // __FALSE _
?1ts(AAA,AAA) // __TRUE_
?21ts("AAA™, TAAA™) // __FALSE_ _
?1ts(TAAAT", " AAA™) // _ FALSE
?1ts(" AAA™, "AAA™) // __ TRUE_
| nes

[Description Format]
[?nes ([<String 1>],[<String 2>])

[Function]
Compare <String 1> and <String 2>.

[Explanation]
m |If <String 1> is not equal to <String 2>, return __ TRUE__. Otherwise, return __FALSE__.
m In case of specifying particular character (exp parenthesis), use double quotation type in <String 1> or

<String 2>.
[Example]
?nes(AAA,AAA) // __FALSE _
?nes(AAA, AAA) // __TRUE_
?nes(AAA,AAA) // __TRUE_ _

2nes("AAA", “AAA™) // _ FALSE
2nes("AAA", " AAA™) // __TRUE _
2nes(" AAA™, "AAA") // __TRUE _

70

Chapter 15 Macroprocess Functions

I substr

[Description Format]

|?substr ([<Character String>], <Expression 1>, <Expression 2>)

[Function]
Extract substring from <Character String>.

[Explanation]

m Extract column from <Expression 1> to <Expression 2> of <Character String>.
First character of <Character String> is assumed as 0 column
If the value of <Expression 1> exceeds length of <Character String>, empty string is extracted.
If the value of <Expression 2> is 0, empty string is extracted.
If the value of <Expression 2> exceeds length of <Character String>, it returns string from

<Expression 1> to the end of <Character String>.

m If the value of <Expression 1> or <Expression 2> is negative value or exceeds maximum limits, error

occurs.

m In case of specifying particular character (exp parenthesis), use double quotation type in <Character

String>.

[Example]

?macro sample argl
?argl

?substr(?argl, 0, 1) // A
?substr(?argl, 0, 2) // AB
?endm

sample "ABCDE"

// “ABCDE”

?substr(?argl, 0, ?len(?argl)) // ABCDE

15.6 Particular Macro

I trigger

[Description Format]

|?trigger (<Trigger Character>)

[Function]
Change trigger character.

[Explanation]

m Question mark (?), period (.), dollar mark ('$) can be used as <Trigger Character>.

[Example]

?len(""ABCDE'™")

?trigger(.)
-len("*'ABCDE™)

71

Part 4 The Macro Preprocessor

Chapter 16 Macro Preprocessor Options

| -D Define Macro

[Description Format]

[-D<Identifier>[=<Replacement Text>]

[Function]
Defines <Replacement Text> to <ldentifier>.

[Explanation]

m This is same as specifying #define directive in head of a source file.

m In case of specifying as "-D <identifier>", it means that <replacement text> is defined as 1.
m |tis not possible to specify following cases.

® \When there is a blank character between <Identifier> and =

® \When there is a blank character between = and <Replacement Text>
m Macro Preprocessor processes -D, -U, -s in following order independently of specifying order.

1.-D
2.-U

| -GN Specify File Name Used in Error Message

[Description Format]

|-GN <Fi lename>

[Function]
Specify the filename which is used for error or warning message.

| -l Specify Search Path for Include Files

[Description Format]

[-1 <Path>

[Function]
Add <Path> as the search path for include files.

[Explanation]

m This option adds the search path for include files specified in #include directive. <Path> cannot be

omitted.

m This option can be specified multiple times. When multiple options specified, the paths are searched

in the order in which the paths are specified.

m Searches are performed according to the path specified in this option when the filename is specified
with a relative path. When a path is specified with absolute path, the specified file is read in without

being searched.
m The file is searched in order of the following directories:

72

Chapter 16 Macro Preprocessor Options

#include "file"

(1) The directory of the source file.

(2) The directory specified with -1 option (When specified multiple times, the paths are
searched in the order specified).

(3) The include directory under the directory specified in the environment variable
THOME900.

#include <file>

(1) The directory specified with -1 option (When specified multiple times, the paths are
searched in the order specified).

(2) The include directory under the directory specified in the environment variable
THOME900.

Recognize the Kanji Code (Japanese version only)

[Description Format]
[-J

[Function]
Recognizes the kanji code.

[Additional Note]
Do not use this option for English version.

Disable the Macro Definition

[Description Format]
[-U<ldentifier>

[Function]
Disables the macro definition specified with <ldentifier>.

[Explanation]

m This is the same as specifying #undef directive in head of a source file.

m Macro Preprocessor processes -D, -U, -s in following order independently of specifying order.
1.-D
2.-U

Output Version Number

[Description Format]
[-V

[Function]
Outputs the Macro Preprocessor version number to standard output.

[Explanation]
m This option cannot be included in files for which -f option is specified.

73

Part 4 The Macro Preprocessor

| -e Create Error List File

[Description Format]
|-e<Filename>

[Function]
Outputs all error messages to one file as a error list file.

[Explanation]

m This option outputs all errors and warnings that occur during Macro Preprocessor execution to the file
specified in <Filename>.

m When a fatal error occurs, processing ends immediately and no error list file can be created.

| -f Read Option List File

[Description Format]
| -f<Filename>

[Function]
Reads the options from an option list file containing a startup option list.

[Explanation]

m Describes in advance in a text file the option to be specified and specified the file as <Filename>.
m |tis possible to describe options on multiple lines within an option list file.

m This option can be specified multiple times to specify multipl option list files.

| -g Create Debugger Information

[Description Format]
-9
[Function]
Output debug information to an output file.

| -l Create a Macro Preprocessor List File

[Description Format]
[-1

[Function]
Creates a macro preprocessor list file.

[Explanation]
m A macro preprocessor list file is generated by the file name which changed the suffix of the source
file name to ".med".
m Macro Preprocessor outputs following information to a macro preprocessor list file.
® Input source file and processed result.
® Result of definition by replcacement macro and numerical macro.
® #include information.

74

Chapter 16 Macro Preprocessor Options

I-o

Specify an Output Filename

[Description Format]
|-o<Filename>

[Function]
Specifies the filename of the output file.

[Explanation]
m When this option is omitted, the output file is generated by the file name which changed the suffix of
the source file name to ".asm".

I-s

Define Identifier of Variable Function

[Description Format]
[-s <ldentifier>[=<Value>]

[Function]
Defines <Value> to <ldentifier>.

[Explanation]

m This is same as specifying ?variable directive in head of a source file.
m If <Value> is omitted, it means that <Value> is defined as 1.

m |t is not possible to specify following cases.

® \When the <Value> is not an integer
® \When there is a blank character between <Identifier> and =
® \When there is a blank character between = and <Value>

75

Part 4 The Macro Preprocessor

Chapter 17 Macro Preprocessor Limitation

Table below shows the Limitation of the Macro Preprocessor.

Table 17-1 Limitation of Macro Preprocessor

Item

Limitation

Number of lines of a source file

655360 lines

Number of characters of one line

65536 characters

Number of identifier characters

1024 characters

Number of characters of absolute path

1024 characters

Nest level of #if, #ifdef, #ifndef

63 level

Nest level of #include

255 level

Number of parameters of #define

127 parameters

Value that #line parameter can be specified

655360

Number of identifiers characters which is specified with option -s

1024 characters

Number of times that option -1 can be specified 31 times
Number of times that option -D can be specified 65536 times

Nest level of ?macro, ?repeat, ?while, ?if 32 level
Repeat count of ?repeat 65535 times
Number of parameters of ?macro 127 parameters
Number of local symbols of ?macro 64 symbols
Value that ?substr parameter <Expression 1> and <Expression 2> 4294967295

can be specified

76

Part 5 The Librarian

Chapter 18 The Librarian

Chapter 18 The Librarian

18.1 Librarian Overview

The Librarian collects some relocatable object files created by the Compiler or Assembler to one file,
and creats a library file.

When relocatable object files are registered in a library file and this library file is specified at linking,
the linker can extract and link only required modules automatically.

Librarian Functions
Librarian has the following functions:
Creation of library files
The librarian can create new library files.
Registering modules in library files
Librarian can register the specified modules in an existing library file.
m Deletion of modules from library files
Librarian can delete specified modules from a library file.
m Updating modules in library files
Librarian replace the specified modules in a library file.
m Display identifier information from a modules in library files.
Librarian can output identifier information from the specified module in a library file to
standard output.
m List names of modules in library files
Librarian can output the names and sizes of the modules in a library file to standard output.

18.2 Startup command

[Description Format]
[tulib <Option> <Library Filename> [<Filename>]|<Module_name>] |

[Explanation]
m Specify commands, <Option>, <Library_Filename>, and [<Filename>|<Module_name>] delimited
with spaces.
m <Option> must be specify one of the following.
R I N
<Option> can specify multiple, however these option (-d, -1, -r, -t) are not specified in one time.
<Library_Filename> is specifyed only one.
Multiple file names (or module names) can be specified in [<Filename>|<Module_name>].

18.3 Input and Output Files

m Table below shows the suffixes used in the names of input and output files of Librarian.

Table 18-1 Input and Output files of Librarian

Suffix File type Classification
lib Library file Input and output
rel Relocatable object file Input

79

Part5 The Librarian

m Library file
This is a file that links multiple library files and relocatable object files. The librarian performs
module registration, updates, and deletion, etc. on this library file. It is also possible to specify a
library file as an input file.
This file is a binary format file that complies with the IEEE695 object module format.

m Relocatable object file
Relocatable object files output by the compiler or assembler are the input files for Librarian.
The contents of such relocatable object files are registered in the library file as modules.
This file is a binary format file that complies with the IEEE695 object module format.

80

Chapter 19 Librarian Options

Chapter 19 Librarian Options

I -V Output Version Number

[Description Format]
[-V

[Function]
Outputs the Librarian version number to standard output.

[Explanation]

m When the Librarian is activated, startup messages such as the Librarian version number are output to
standard output.

m This option cannot be included in files for which -f option is specified.

I -d Delete a Module

[Description Format]
|-d[<Suboption>] <Library_Filename> <Module_Name>

[Function]
Deletes modules from a library file.

[Explanation]

m Deletes modules specified <Module_Name> from a library file specified <Library_Filename>.

m Multiply <Module_Name> delimites with space.

m An error occurs if the modules specified <Module_Name> do not exist in the specified
<Library Filename>.

m When <Module_Name> is omitted, the librarian ends execution normally without processing a library
file.

m This option cannot specify with -l or -r or -t option at a time.

Table 19-1 Suboptions of -d option
Suboptions Function
% Outputs the name of the deleted modules to
standard output.

I -e Create Error List File

[Description Format]
| -e<Fi lename>

[Function]
Outputs all error messages to one file as a error list file.

[Explanation]

m This option outputs all errors and warnings that occur during librarian execution to the file specified
in <Filename>. If <Filename> already exists, error messages will be added to the file.

m When a fatal error occurs, processing ends immediately and no error list file can be created.

81

Part5 The Librarian

| -f Read Option List File

[Description Format]

|-f<Filename>

[Function]
Reads the options from an option list file containing a startup option list.

[Explanation]

m Describes in advance in a text file the option to be specified and specified the file as <Filename>.
m |tis possible to describe options on multiple lines within an option list file.

m This option can be specified multiple times to specify multipl option list files.

| -l Output Module Identifier Information

[Description Format]

[-1 <Library Filename> [<module_List>]

[Function]
Outputs identifier information for modules in a library file.

[Explanation]
m Specify module names delimited with space as <Module_L.ist>.
m The following is output as identifier information in a module:
® Module name
® Size
® External definition symbols
® External reference symbols
m When <Module_List> is omitted, the information about all modules contained in a library file is
output.
An error occurs if the modules specified in <Module_List> do not exist in the specified library file.
This option cannot specify with -d or -r or -t option at a time.

| -r Create Library File and Register and Update Modules

[Description Format]

| -r[<Suboption>] <Library_ Filename> <Module_List>

[Function]
Creates a library file and registers and updates modules.

[Explanation]
m The following files can specify as <Module_List>.
® Relocatable object file
@ Library file
m This option registers and updates the modules specified in <Module_List> in the library file specified
in <Library_Filename>.
Specify module names delimited with space in <Module_List>.
When the module which is included in file specified in <Module_List> exist in a library file specified
in <Library_Name>, that module is updated.

82

Chapter 19 Librarian Options

m If the library file specified in <Library_Filename> does not exist, a message is output and a new file is
created. The modules are then registered in the new library file.
m This option cannot specify with -d or -l or -t option at a time.

Table 19-2 Suboptions of -r option

Suboptions Function

c Message at creating a library file is not output.
Updates the modules, when the date and time of creation of file
specified in <Module_List> is newer than the library file and the
module is registered in the library file.
When the file specified in <Module_L.ist> does not exist in the library
file, it can not add.

v Outputs the name of the added or updated module to standard output.

w Updates the modules, when the date and time of creation of file
specified in <Module_List> is newer than the library file and the
module is registered in the library file.
When the file specified in <Module_List> exist in the library file, it is
added to the library file.

I -t Output Module Information

[Description Format]

|-t[<Suboption>] <Library_Filename> [<Module_List>]

[Function]
Outputs a list of modules in a library file.

[Explanation]
m Specify module names delimited with space in <Module_List>.
m The module information contains the following information:

Module name
Module size in bytes (only when suboption v specified)
Module attribute (only when suboption v specified)

Module creation date and time (only when suboption v specified)
m An error occurs if the library file specified in <Library_Filename> do not exist.
m This option cannot specify with -d or -1 or -r option at a time.

Table 19-3 Suboptions of -t option

Suboption

Function

\

Outputs size,attribute, and creation date and time in addition to the
module name. When the suboption 'v' is omitted, only module names
are output.

83

Part 6 The Object Converter

Chapter 20 The Object Converter

Chapter 20 The Object Converter

20.1

20.2

20.3

Object Converter Overview

The Object Converter is a utility tool for converting the absolute object files output by the Linker into
an object format usable by an EPROM writer.

The user can select from five object formats: Intel HEX format (16-bit addressing), Intel extended
HEX format (20-bit addressing), and Motorola S format (in 16-bit addressing, 24-bit addressing, and 32-
bit addressing).

Startup command

[Description Format]
|tuconv [<Option>] <Absolute Object Filename>

[Explanation]
m Specify command, <Option>, and <Absolute_Object_Filename> delimited with spaces.
m |f the object format is omitted, Intel HEX format is selected.

Input and Output Files

m Table below shows the suffixes used in the names of input and output files of Object Converter.

Table 20-1 Input and Output files of Object Converter

Suffix File type Classification

.abs Absolute object file Input

.h16 Intel HEX Output
.h20 Intel Extended HEX Output
.516 Motorola S Format (16-bit addressing) Output
.524 Motorola S Format (24-bit addressing) Output
532 Motorola S Format (32-bit addressing) Output
.000 - .off Overlay file Output
User defined | Object converter list file Output

m Absolute object file
This file is a object file of binary format that complies with the IEEE695 object module format,
output by the linker. This file contain identifier and external symbols which are assigned absolute
addresses.

m Obiject converter list file
Obiject converting information such as section allocations for the each output object file is

output.
To output this file, the file name must be specified with option -If. Using option -1 outputs the
information to standard output.

87

Part 6 The Object Converter

Chapter 21 Object Converter Options

| -F Select Object Format

[Description Format]
| -F<Suboption>

[Function]
Specifies the output object format.

[Explanation]
m The object formats are as follows:

Table 21-1 Object Formats

<Suboption> Object format Suffix
h16 Intel Hex format .h16
h20 Intel extended Hex format .h20
s16 Motorola S-16 format 516
s24 Motorola S-24 format .524
s32 Motorola S-32 format .832

You cannot specify more than one object format at one time.

If this option is omitted, it is recognized as option -Fh16 specified.

If a numeric value of <Suboption> is omitted, the command is processed assuming a value 16 is
specified. (-Fh =-Fh16, -Fs = -Fs16)

| -P Specify Fill Value for Empty Area

[Description Format]
| -P[<Start_Address>],<Size>,<Value>, [<Output_Filename>]

[Function]
Outputs <Size> area to the file specified with <Output_Filename> from <Start_Address>. At this time,
the empty area is initialized using the specified <Value>.

[Explanation]

m When this option is used together with the option -ra, -rb, the empty area is filled after moving object
by option -ra, -rb.

m Specify <Start Address> to define with 32-bit unsigned integer. When <Start Address> is omitted, the
start address is addressed O.

m <Size> specifies 32-bit unsigned integer in bytes. k" following the numerical value represents kiro
byte and "m™ is mega byte.
<Value> is 1 byte integer.
When this option is used together with the option -ra, -rb, a different filename from the <Output
Filename> which is specified by -ra, -rb option, cannot be specified.

m This option can be specified multiple times.

88

Chapter 21 Object Converter Options

I -V Output Version Number

[Description Format]
[-V

[Function]
Outputs the Object Converter version number to standard output.

[Explanation]

m When the Object Converter is activated, startup messages such as the Object Converter version
number are output to standard output.

m This option cannot be included in files for which -f option is specified.

I -c Specify a comment

[Description Format]

-cc <Comment>
-cf <Filename>

[Function]
Specifies a comment to be inserted into an object file output by Object Converter.

[Explanation]

m <Comment> is a character string.

m <Comment> cannot include spaces.

m Multi-line comments can be written in the file which is specified in <Filename>.

m When converting a file to the Intel Hex format, the colon (:) cannot be used as the first character of a
comment. If it specified, it is ignored and output a warning.

I -e Create Error List File

[Description Format]
|-e <Filename>

[Function]
Outputs all error messages to one file as a error list file.

[Explanation]

m This option outputs all errors and warnings that occur during object converter execution to the file
specified in <Filename>.

m When a fatal error occurs, processing ends immediately and no error list file can be created.

I -f Read Option List File

[Description Format]
|-f <Filename>

[Function]
Reads the options from an option list file containing a startup option list.

89

Part 6 The Object Converter

[Explanation]

m Describes in advance in a text file the option to be specified and specified the file as <Filename>.
m |tis possible to describe options on multiple lines within an option list file.

m This option can be specified multiple times to specify multipl option list files.

| -| Output an Object Converter List

[Description Format]

|-1[<Suboption>]

[Function]
Outputs an object converter list.

[Explanation]
m Output the following information as an object converter list.
® CPU
® Input file name
® Output filename and object format
® Section information (section name, allocation address, address offset, size)
® Padding information (padding value, allocation address, size)
m The suboption types are as following.

Table 21-2 Suboptions of option -I

Suboptions Function
No specification Output an object converter list to standard output.
f <Filename> Output a file specified in <Filename>. <Filename>
cannot be omitted.

| -0 Specify an Output Filename

[Description Format]

| -o<Fi lename>

[Function]
Specifies the filename of the output file.

[Explanation]

m The suffix of the filename in <Filename> is not checked.

m When this option is omitted, the output file is generated by the file name which changed the suffix of
the source file name according to the specified object format.

m When using this option together with the option -ra and -rb, this option is ignored.

-ra Specify Object Output Range (address specification)

[Description Format]

-ra [<Source Address>],[<Size>],[<Offset|Destination Address>],
[<Output Filename>]

90

Chapter 21 Object Converter Options

[Function]

The object converter cut out the <Size> part object from the <Source Address> of the input file. The

cut out part is moved to the address specified by <Offset|Destination Address>, and is output to the file
specified by <Output Filename>.

[Explanation]

Specify <Source Address> to define with 32-bit unsigned integer. When <Source Address> is omitted,
this will be regarded as address 0.
Specify <Size> to define with 32-bit unsigned integer. When <Size> is omitted, all objects after
<Source Address> is output.
Specify <Offset|Destination Address> as follows.
<Integer Value> Specifies the destination address.

+<Integer Value> Adds <Integer Value> as offset to <Source Address>.

-<Integer Value> Subtracts <Integer Value> as offset to <Source Address>.
<Output Filename> is omitted, the output file is generated by the file name which changed the suffix
of the source file name according to the conversion format.
When this option is specified multiple times and <Output Filename> is the same one, the respective
options are collected into one output file.
The object address is changed. However, the contents of the object is not changed.

I -rb

Specify Object Output Range (section specification)

[Description Format]

-rb <Section Name>,[<Size>],[<Offset|Destination Address>],

[<Output Filename>]

[Function]

The object converter cut out the <Size> part object from the initial address of <Section Name> of the

input file. The cut out part is moved to the address specified by <Offset|Destination Address>, and is
output to the file specified by <Output Filename>.

[Explanation]

Specify the section name which moves as <Section Name>.
<Section Name> is the section name determined at linking. When the output section name is specified
at linking, specify that output section name to <Section Name>.
Specify <Size> to define with 32-bit unsigned integer. When <Size> is omitted or exceed the
specified section size, only the specified section is output.
Specify <Offset|Destination Address> as follows.
<Integer Value> Specifies the destination address.

+<Integer Value> Adds <Integer Value> as offset to the initial address of <Section Name>.

-<Integer Value> Subtracts <Integer Value> as offset to the initial address of <Section Name>.
<Output Filename> is omitted, the output file is generated by the file name which changed the suffix
of the source file name according to the conversion format.
When this option is specified multiple times and <Output Filename> is the same one, the respective
options are collected into one output file.
The object address is changed. However, the contents of the object is not changed.

91

Part / Error Message

Chapter 22 Error Message Format

Chapter 22 Error Message Format

22.1 Types of Error Message

There are the following three types of error message.

Warning
A warning is output when a compile result may become what a user does not mean. The compiler
outputs a warning, but compiling work continues, and output file is generated.

Error
An error is output when syntax that violates the rules is detected.

Fatal Error
A fatal error is output when some kind of serious problem occurs under compiling and it is no longer
possible to progress with source file compiling.

22.2 Error Message Format

Error messages take the following format:

|<Fi|ename> <Line Number> : <Tool>-<Type>-<Number> : <Message>

<Filename> This is the name of the file in which the error occurred. <filename> is not output
when the cause of an error is not related to a specific file.

<Line Number> This is the number of the line in which the error occurred. Usually, it outputs to an
error as which a filename is output.

<Tool> This is the name of the tool (assembler etc.) in which the error is occurred.
<Type> This is the error type.

Fatal

Error

Warning
<Number> This is the error number, described later.

Fatal : 0-99

Error : 200 - 499

Warning : 500 - 999

<Message> The message is a description of the error.

95

Part 7 Error Message

Chapter 23 Assembler Error Messages

23.1 Assembler Fatal Errors

<I/O Errors>
20: Can't open "'<filename>"

The specified file cannot be opened.
21: Can'tclose "'<filename>"'

The specified file cannot be closed.
22: Can't read "'<filename>"

The specified file cannot be read.
23: Can't write "'<filename>"'

The specified file cannot be written.
24: Can't seek "'<filename>"'

The specified file cannot be sought.

<Invocation Errors>
100: No source file found in invocation

No input source file is specified in the command.
101: Illegal file specification

The illegal filename is specified.
102: File must be a disk

You cannot specify a file other than a disk file.
103: "<filename>"" files are the same

The same filename is specified more than once.
105: Bad parameter syntax

A parameter of an option is incorrect.
106: Missing parameter *'<option>"'

A parameter which should be specified for an option is missing.
107: lllegal sub option in '-I'

The suboption of -I' is illegal.
109: Unrecognized option "'<option>"'

An invalid option is specified.
110: Numeric constant out of range

The numeric value is out of range.
111: Can't nest a command file

The option list file is nested.

<Execution errors>
152: Illlegal source file format
The source file format is illegal.
154: Internal object file error
The object file is illegal.
155: Too many expressions
Too many expressions or expressions are too complex.

96

Chapter 23 Assembler Error Messages

156:

158:

160:

161:

162:

163:

Optimization table overflow
The optimization table overflowed.
String table overflow
The string table overflowed.
Symbol table overflow
The symbol table overflowed. Delete unused symbols, divide the assembly source file.
Out of memory
The working memory area is insufficient.
Command line too long
The command line or option list file exceeds the upper limit.
Too many **file™ instructions
The number of "file" directives of debugging information exceeds the upper limit.

23.2 Assembler Errors

200:

201:

202:

203:

204:

205:

206:

208:

209:

210:

212:

215:

216:

217:

218:

Syntax error
A syntax error occurred.
Attempt to divide by zero
A divide by zero occurred.
Illegal numeric constant
A numeric constant is illegal. Common causes are specifying characters which cannot be
used in numeric constant.
Multi-defined symbol **<symbol>"*
The <symbol> is multi-defined.
Invalid relocatable expression
There is an invalid relocatable expression. An absolute expression can be used for such as a
shift amount of shift opration, using
Unbalanced parentheses
Parentheses are unbalanced.
Invalid expression
There is an invalid expression.
Illegal label or variable
There is an illegal label or variable.
Illegal character string
There is an illegal character string.
Not allowed public attribute
A symbol for which public declaration is not allowed is used in public declaration.
Illegal SECTION directive
There is an illegal SECTION directive.
No section definition
Instructions are described without a section definition.
Invalid section attribute
The section attributes or displacement of section directive is invalid.
Absolute section error
Absolute section addresses overlap.
Illegal control
There is an invalid control statement.

97

Part 7 Error Message

220: Reference to multi-defined symbol
A multiply defined symbol is referenced.
221: Undefined symbol
An undefined symbol is referenced.
222: Absolute expression expected
Except an absolute expression can not describe.
223: Not allowed forward reference
Forward references are not allowed.
225: Not allowed section reference
Section names can not reference.
226: lllegal symbol reference
There is an illegal symbol reference.
227: Out of range for relative reference
An offset of a relative branch instruction exceeds the effective range.
228: Overflow in location counter
A location counter overflows.
229: Location counter can't point lower address
The specified address is less than the current location counter.
230: Operand type mismatch
Types of operand do not match.
231: Too few or many operands
The number of operand is illegal.
232: Section "'<section_name>"" does not exist
The specified section does not exist.
234: The nesting level is exceeded
Include files are nested exceeding the maximum nesting level.
300: Illegal operand value for CALLV
The operand value of CALLYV instruction is illegal.

23.3 Assembler Warning Errors

500: Illegal string constant
There is an illegal character constant description, or the number of character constant
exceeds the upper limit. The exceeded part is truncated.
501: Operand value is out of range
The operand value is out of range. Unintended consequences may be obtained, because the
only least significant bits are from the low order.
503: Some optimizations lost
Non-optimized labels remain.
504: Invalid instruction in this section
Machine instructions are described in the section which is not a code section.
505: Invalid directive in this section
The position described a directive is invalid. The directive is ignored.
506: No END directive
No END directive at the end of the source file. It is treated as if the directive exists.

98

Chapter 23 Assembler Error Messages

507:

508:

509:

514:

515:

516:

517:

518:

519:

550:

Text found after END statement
There are source program after the END directive. The source programs after the END
directive are ignored.

Invalid value in ALIGN directive
A value specified ALIGN directive is invalid.

Duplicated MODULE directive

MODULE directive has been redefined. The second and subsequent MODULE directives

are ignored.
Source file empty
No source program is described in the specified source file.
Illegal parameter
The option is multiple specified. The option after second ignores.
Illegal escape sequence
There is an illegal escape sequence. The escape sequence is ignored.
This section already has a different attribute
A section of the same name has already been defined with a different type. The section
definition is ignored and the preceding section is continued.
The floating-point type is not correct.
The floating type constant is illegal.
Ignored option '<option>*
-Nb option is multiple specified. The option after second ignores.
Can't create a sort table, display symbols at random
The symbol table cannot be sorted since the size of a source file is too large. Processing
continues without sorting the symbol table.

99

Part 7 Error Message

Chapter 24 Linker Error Messages

24.1 Linker Fatal Errors

<I/O Errors>
20: Can't open "'<filename>"

The specified file cannot be opened.
21: Can'tclose "'<filename>"'

The specified file cannot be closed.
22: Can't read "'<filename>"

The specified file cannot be read.
23: Can't write "'<filename>"'

The specified file cannot be written.
24: Can't seek "'<filename>"'

The specified file cannot be sought.

<Invocation Errors>
100: No source file found in invocation
No input source file was specified in the command.
101: Illegal file specification
The illegal filename is specified.
103: "<filename>"" files are the same
The same filename is specified more than once.
104: Bad parameter symtax
A parameter of an option is incorrect.
105: Missing parameter **<option>"'
A parameter which should be specified for an option is missing.
106: Illegal suboption in *-I"
The suboption of -I' is illegal.
108: Illegal character "'<character>""
The illegal character is specified as an option.
110: Unrecognized option "'<option>""
An invalid option is specified.
111: lllegal numeric constant
A numeric constant is illegal. Common causes are specifying characters which cannot be
used in numeric constant.
112: '-r' option requires *-0" option
When '-r' option is specified, the output file must also be specified via -0’ option.
113: Both “-r’ and ‘-ng’ are set
When '-r' option is specified, '-ng' option cannot specify.

<Execution Errors>
120: Bad object format in "'<filename>"" (<address>)

The object file format in the input file is not correct.
121: Illlegal processor name in *'<filename>"'

The processor name in the input file is illegal.

100

Chapter 24 Linker Error Messages

122:

123:

124

130:

131:

133:

134:

139:

141:

Illegal symbol class in "'<section_name>"" in "'<filename>""
There is an illegal symbol class.
Illegal relocation type in **<section_name>"" in "'<filename>"'
There is illegal information relating to section allocation in a file.
"'<Symbol>"" from ""<filename>"" already bound to an output section
The identifier is already bound to an output section.
Boundary ""<constant>"" not available in configured memory
There is incorrect information in a library file.
Fail to allocate "'<count>"" bytes for slotvec table
Sufficient memory could not be reserved in the work area due to insufficient memory.
Truncated "'<section_name>"" in "'<filename>""'
The file contains a truncated section.
Error(s). No output written to *'<filename>"*
Errors occurred so no output file was created.
Reloc entries out of order in "'<section_name>"" of "'<filename>"'
Relocation entries are abnormal.
Run is too large and complex
Memory allocation failed because the allocation specification was too complex. Use the
incremental linking function to separate the levels and simplify linking.

<Link Command File Errors>

150:

151:

152:

153:

154:

155:

156:

157:

158:

160:

161:

163:

Syntax error
A syntax error occurred.
Illegal section name or memory name
Memory name or section name is illegal.
Illegal address as origin or length
Memory start address or length specification is illegal.
Illegal memory specification
The specification in the memory definition part is illegal.
Multiple reference of a input section
A single section is referenced multiple times in a section definition part.
Illegal assignment
The assignment statement is illegal or too complex.
Semicolon required after expression
A semicolon is missing from the end of the assignment statement.
Bad fill value
Padding value is illegal in the '-F' option.
Multiple defined memory **<memory_name>"*
The same user-defined memory is defined multiple times in the memory definition part.
Illegal output specification
Output specification is illegal in the section definition part. The main cause of this error is
the multiple definition or incorrect sequence in the output specification ‘org’, 'align’, 'len’
and 'addr".
OVERLAY section must BINDed
An address specification is required for an OVERLAY section.
Statement ignored
The statement is illegal.

101

Part 7 Error Message

166: Section not built "'<section_name>""
The output section was not created. The main cause of this error is the inability to create
the output section due to no memory area being allocated to the output section.

167: Missing Relocatable expression
There is a invalid expression. The main cause of this error is when undefined or unresolved
output sections are specified by the operators 'org’, 'addr' and 'sizeof".

168: MEMORY segment overlap **<memory_name>"" and "*<memory_name>"
Memory areas specified in the memory definition part overlap.

169: lllegal operator in expression
The expression contains an invalid operator.

170: Can't set attributes "'<attribute>""
The memory definition part contains memory attributes which cannot be specified. The
cause of this error is characters other than 'RXW!I' being specified, or one of these
characters being specified more than once.

172: Can't nest a command file
The option list files are nested. This is because when a relocatable object file of an object
format that is not IEEE695 is specified in a link command file, the Linker interprets that
file as a link command file.

173: lllegal expression
The expression specification is illegal.

24.2 Linker Errors

201: '"'<section_name>"" enters unconfigured memory at "'<address>"*
As a result of section allocation, section <section_name> was allocated in memory which
was not defined in the memory definition part (at <address>).
The main causes are as follows:
@ The area defined by the memory definition part is too small so it doesn't fit.
@ Even though there is a memory definition part, the input section type memory is not
defined.
202: Can't link '<section_name>"" with different attribute
Sections of different types (code, data, etc.) cannot be combined.
203: Absolute sections ""<section_name>"" can't in SECTIONS
Absolute sections cannot be specified in the section definition part.
206: Section ""<section_name>"" overlap
The section overlaps another section.
207: Multiply defined "'<symbol>"" in "'<filename>""
The symbol has been multiply defined.
209: Reference made to unresolved external symbol **<symbol>"*
An unresolved symbol exists.
210: ''<section_name>'" at "'<address>"* won't fit into configured memory
<section_name> could not allocate to the specified area.
211: No space for ""<section_name>""in "'<memory_name>"'
The memory allocated to the <section_name> is full.
214: '<section_name>"' not yet allocated
The section has not been allocated.

102

Chapter 24 Linker Error Messages

217:

218:

219:

226:

227:

228:

229:

231:

232:

233:

Value of "'<symbol>"" in "'<filename>"" not fit in the object code
The symbol value is not fit the object code.
DSECT "<section_name>"' can’t be given an owner
Memory cannot be specified for a dummy section.
Multiply defined output section *'<section_name>"'
The output section name has been multiply defined.
Can't allocate "<section_name>"" to "'<memory_name>"'
Cannot allocate memory in accordance with section attributes.
Attributes are mismatch between section and memory
The section and its allocated memory have different attributes.
Illegal padding
Padding was performed on an area which cannot be padded. Padding can only be
performed on memory areas which have | attribute.
Making aux entry "'<number>"" for **<symbol>"" out of sequence
Auxiliary information was not created correctly.
Section "'<section_name>"" at "'<address>"" load value overflow. Truncated
The output section relocation value does not fit in the object specified size. The higher
order byte is discarded.
Symbol "'<symbol>" size mismatch
The extern declaration displacement and public declaration displacement are different.
Section "'<section_name>"" at "'<address>"" attempt to divide by zero
A divide by zero occurred at location "<address>" in "<section>".

24.3 Linker Warning Errors

500:

501:

504:

505:

509:

511:

513:

514:

515:

Absolute symbol "'<symbol>"" being redefined
A symbol which allocated absolute address was redefined.
Symbol "'<symbol>" from file "'<filename>"" being redefined
A symbol was redefined.
Multiply defined symbol **<symbol>"* from file **<filename>"* has more than one size
A symbol was multiply defined. The previous definition was for a different displacement.
"'<number>"" is not a power of 2
The align operator parameter is not a power of two.
Useless MEMORY specification with *-r* option
The memory definition part was ignored because '-r' option (perform incremental linking)
was specified.
Unresolved external symbol "'<symbol>""
An unresolved external symbol exist.
Section "'<section_name>"" size lager than definition
The output section size exceeds the size specified in the link command file.
All input files are LIBRARY files; no processor name exist
As only library files were specified as input files the processor name could not be obtained.
Value is used what defined at "'<filename>"" as symbol ""<symbol>"'
The symbol is multiply defined. The value of "<symbol>" specified in "<filename>" is
used.

103

Part 7 Error Message

516: Value is used what lastly defined at LCF as symbol **<symbol>""
The symbol is multiply defined. The value which is specified as "<symbol>" at the last of
the link command file is used.
517: Useless symbol definition with *-r* option
An assignment statement is defined in incremental linking.
518: llligal parameter
A conflicting option is specified.
520: The predefined memory is overlapped ""'<memory_name>"'
The predefined memory is multiply defined or overlapped.
523: Starting address of CODE or ROMDATA area is specified in 'addr’
The start address in the link command file is that of the CODE or ROMDATA area.
524: CODE or ROMDATA section is allocated in DATA area with "org’
The input section of the CODE or ROMDATA type was allocated in the DATA area after
specifying its address by 'org' of the link command file.

104

Chapter 25 Macro Preprocessor Error Messages

Chapter 25 Macro Preprocessor Error Messages

25.1 Macro Preprocessor Fatal Errors

<Command Line>
001: Invalid option '<option name>'
Invalid option is specified.
002: Unable to open option file <filename>
Option file cannot be opened.
003: Unable to open input file <filename>
The input file cannot be opened.
004: Unable to open output file <filename>
The output file cannot be opened.
005: Unable to open error output file <filename>
The error output file cannot be opened.
006: Unable to open list file <filename>
The list file cannot be opened.
007: Symbol not specified with *<option name>* option
The illegal symbol is specified with <option name> option.
010: Same filename <filename> specified
The same filename is specified in input files or output files.
011: Filename not specified with '<option name>" option
The filename has not been specified with <option name> option.
012: Source file not specified
Input filename has not been specified.
015: ‘<option name>' filename exceeds maximum limit
The filename whose number of character exceeds maximum limit is specified as <option
name> parameter.
016: '<option name>' path name exceeds maximum limit
The path name whose number of character exceeds maximum limit is specified.
017: Source filename exceeds maximum limit
The input filename whose number of character exceeds maximum limit is specified.
018: Output filename exceeds maximum limit
The output filename whose number of character exceeds maximum limit is specified.
020: The parameter of option '<option name>" is not specified
No argument is specified for <option name>.
021: Extra source file specified
Two or more input files are specified.

<General>

040: Total number of characters in the line exceeds maximum limit
The number of characters of a line exceeds maximum limit. A line means the logical line
after performed line splice.

041: Number of source lines exceeds limit
The number of lines which includes include file exceeds maximum limit.

105

Part 7 Error Message

042: Out of memory

Memory area cannot be allocated.
043: Number of expansion exceeds maximum limit

The number of expantions exceeds maximum limit.
<Preprocessor>
080: ‘#endif' expected

#endif directive in relation to #if, #ifdef or #ifndef is not specified.
081: ‘#ifdef/#ifndef' expects an identifier

An identifier is not specified with the #ifdef or #ifndef directive.
082: Too many macro definitions

The number of macro definitions exceeds maximum limit.
083: Too many nested "#if*

The number of nesting levels for #if directive exceeds maximum limit.
084: Too many nested include files

The number of nested #include files exceeds maximum limit.
085: Unable to open include file <filename>

The include file cannot be opened.
086: Unexpected '<reserved word>"

#else, #elseif or #endif directive is specified at illegal place.
087: ‘#line' filename exceeds maximum limit

The number of character of #line directive exceeds maximum limit.
088: ‘#error' message text exceeds maximum limit

The number of character of #error directive exceeds maximum limit.
<Macroprocessor>

None.
<Lexical>
160: Unexpected EOF in block comment

EOF occurs in block comment.

25.2 Macro Preprocessor Errors

<Command Line>

None.
<General>
240: Syntax error

A syntax error occurred.
241: Number is invalid

The number is not specified at the place where the number is specified.
242: Right operand of shift operator has negative value

Right operand of shift operator has negative value.
243: Division/Remainder by zero

Divisor or Remainder is 0, while evaluating constant expression.
244: Too many characters in a character constant

The number of character of a character constant exceeds maximum limit.

106

Chapter 25 Macro Preprocessor Error Messages

245: No character in a character constant
No character is specified as character constant.
246: lllegal expression
Illegal expression is specified.
<Preprocessor>
280: ‘#include' filename exceeds maximum limit
The number of character of filename specified with #include exceeds maximum limit.
281: Syntax error in '#define’
The syntax of #define directive is not correct.
282: '##' cannot occur at the beginning of a macro definition
The place of ## operator is not correct. For example, the following description is not
allowed.
#define AAA ##BBB // Error
#define AAA CCC##BBB //OK
283: '##' cannot occur at the end of a macro definition
The place of ## operator is not correct. For example, the following description is not
allowed.
#define AAA BBB## // Error
#define AAA BBB ## CCC // OK
284: Formal parameter missing after "#'
It is specified except parameter after # operator.
285: #error : <string>
#error directive is specified.
286: Invalid line number for '#line'
A invalid line number is specified in the #line directive.
287: '#line' expects string as filename
A invalid character string is specified as filename in the #line directive.
288: '#undef' expect an identifier
A invalid character string is specified as parameter of the #undef directive.
289: Unexpected end of line
Corresponding parentheses are not specified in a same line.
290: '#include' expect a filename
A invalid character string is specified as filename in the #include directive.
291: Too many parameters for macro
The number of parameters exceeds maximum limit.
292: Too many or too few actual arguments in macro call <symbol>
The number of arguments different from definition is specified.
293: Redefinition of the reserved symbol '<reserved word>*
Reserved word cannot be redefined.
294: Redefinition of the predefined symbol '<reserved word>"
Defined macro cannot be redefined.
295: Redefinition of parameter name <parameter>
The parameter names is already used.
296: Unable to use "#undef’ for the reserved symbol '<reserved word>"

Reserved word cannot be undefined.

107

Part 7 Error Message

297: Unable to use "#undef’ for the predefined symbol '<reserved word>"
Defined macro cannot be undefined.

<Macroprocessor>
320: Too many local symbols or labels for macro
The number of local symbols or labels exceeds maximum limit.
321: Redefinition of symbol <symbol>
Symbol cannnot be redefined. For example, a symbol used by ?macro cannot be redefined
using ?variable.
322: ‘'<reserved word>" is a reserved word
Reserved word cannot be redefined.
323: Redefinition of parameter name <parameter>
The parameter name is already used.
324: Redefinition of local symbol name or label name <symbol>
<symbol> cannot be redefined.
325: Macro function nest overflow
The number of nesting levels exceeds maximum limit.
326: Too many parameters for macro
The number of parameters exceeds maximum limit.
327: Too many or too few actual arguments in macro call <symbol>
The number of arguments different from definition is specified.
328: Reserved word ‘<reserved word>" is not made a parameter
Reserved word cannot be specified as a parameter.
329: Reserved word ‘<reserved word>" is not made a local symbol or a label
Reserved word cannot be specified as a local symbol or a label.
330: Macro call <symbol> should be in a new line
The character except space is specified before macro call.
331: Repeat value <expression> out of range
The number of arguments of ?repeat statement exceeds maximum limit.
332: Macro function <symbol> should be in a new line
Macro function cannot be specified in multi line.
333: Valid trigger character expected
The illegal trigger character is specified.
334: '?elseif' after '?else’
?elseif statement used after ?else statement.
335: "?else’ after "?else’
?else statement used after ?else statement.
336: ?elseif/?else’ without "?if’
?elseif or ?else statement used without previously using ?if statement.
337: '?endif* without "?if’
?endif statement used without previously using ?if statement.
338: '?restrict_macro' has already been specified
?restrict_macro statement cannnot be nested.
339: '?endres' has been specified without "?restrict_macro'
?endres statement used without ?restict_macro statement.
340: *?endres’ has not been specified
?endres statement used without ?restict_macro statement.

108

Chapter 25 Macro Preprocessor Error Messages

341: Unable to use architecture specific function ‘<macro function>"
Invalid function is used.

343: Number of macro expansion exceeds maximum limit
The number of macro expansion exceeds maximum limit.

344: No identifier after the trigger character
Trigger character needs identifier after it.

345: Unexpected identifier <symbol> is specified after the trigger character
Invalid identifier is specified after trigger character.

346: Function macro definition cannot be nested
Function macro cannot be nested.

<Lexical>
None.

25.3 Macro Preprocessor Warning Errors

<Command Line>

500: Extra source file ignored
Two or more input files are specified. The first input file specified is valid.

501: Duplicate options '<option name>" have been specified, only the first option is valid
The options are specified more than once. The first option specified is valid.

503: ‘'<option name>' is ignored because list option is not given
<option name> is ignored because "-I' option is not specified.

<General>
540: Expression greater than 32bit length, excess ignored

The result of expression exceeds 32bit length. The exceeded part is truncated.
541: Decimal number has octal prefix

Octal number specification is illegal.

<Preprocessor>
580: Unexpected characters following directive '<directive>"
Extra characters are specified after <directive>. That characters is ignored.
581: Macro <symbol> redefined
The macro is redefined.
582: Length of the replacement text exceeds maximum limit, excess truncated
The number of characters in the replacement string exceeds maximum limit.

<Macroprocessor>
None.

<Lexical>

660: Identifier too long, excess truncated
The identifier whose number of character exceeds maximum limit is specified. The excess
part is ignored.

109

Part 7 Error Message

Chapter 26 Librarian Error Messages

26.1 Librarian Fatal Errors

<|/O Errors>

20:

22:

23:

24:

25:

26:

27:

28:

29:

Can't open "'<filename>"'
The specified file cannot be opened.
Can't read "'<filename>"*
The specified file cannot be read.
Can't write "'<filename>"'
The specified file cannot be written.
Can't seek "'<filename>"'
The specified file cannot be sought.
Can't creat "'<filename>"'
The specified file cannot be created.
Can't creat temp file
A work file cannot be created.
Can't open command file "'<filename>""
The command file cannot be opened. The main cause of this error is that the file does not
exist.
""<filename>"" is not reading permited
The specified file does not have read permission.
""<filename>"" is not writing permited
The specified file does not have write permission.

<Invocation Errors>

101:

110:

115:

116:

117:

118:

1109:

125:

126:

Illegal file specification
The illegal filename is specified.
Unrecognized option *'<option>""
An invalid option is specified.
usage: tulib -[drtl][vuc] files
Required command parameters were not specified.
One of [drtl] must be specified
A required option was not specified. One of the options d, t, r or | must be specified.
Only one of [drtl] allowed
Incompatible options were specified. The options d, t, r and | can be specified at one time.
Cannot use option in command file
An option which cannot be used in a option list file is specified.
Target processer is different
The target MCU does not match in the object files or library files.
Option '-r' is libraryfile or objectfile
It is specified except a library file or object file with '-r' option.
""<filename>"" not in library format
The specified file is not in library format. The main cause of this error is specifying except
library file as a library file.

110

Chapter 26 Librarian Error Messages

127:

135:

136:

""<filename>"" internal header generation error
An internal header error occurred in the specified file.

Dynamic storage allocation failure
Working memory cannot be reserved. Divide the library files into smaller files, and then
retry.

Time of "'<filename>"" is broken
The time read from the specified file is incorrect. The file contents are invalid, so re-create
is required.

26.2 Librarian Errors

240:

241:

243:

244:

245:

247:

248:

250:

Cannot open "'<filename>""
The specified file cannot be opened.
"<filename>"" not found
The specified file cannot be founded.
Status of objectfile is ERROR
The execution status of the specified object file is ERROR.
Status of objectfile is WARNING
The execution status of the specified object file is WARNING.
"'<module>"" does not exist in library file
The specified module does not exist in the library file.
""<filename>"" is not writing permited
The specified file does not have write permission.
Cannot make library file without module
A module was not specified. A library file cannot be created without a module.
""<filename>"" is not an object file
The specified file is not an object file. The main cause of this error is specifying except
object file as an object file.

26.3 Librarian Warning Errors

None.

111

Part 7 Error Message

Chapter 27 Object Converter Error Messages

27.1 Object Converter Fatal Errors

<|/O Errors>

20:

21:

23:

24:

Can't open "'<filename>"'

The specified file cannot be opened.
Can't close "'<filename>"'

The specified file cannot be closed.
Can't write "'<filename>"'

The specified file cannot be written.
Can't seek "'<filename>"'

The specified file cannot be sought.

<Invocation Errors>

100:

101:

102:

103:

105:

106:

107:

109:

110:

111:

112:

113:

114:

115:

No source file found in invocation
No input source file is specified in the command.
Illegal file specification
The illegal filename is specified.
File must be a disk
You cannot specify a file other than a disk file.
"<filename>"" files are the same
The same filename is specified more than once.
Bad parameter syntax
A parameter of an option is incorrect.
Missing parameter *'<option>"'
A parameter which should be specified for an option is missing.
Illegal sub option
The suboption is illegal.
Unrecognized option ""<option>"'
An invalid option is specified.
Can't nest a command file
The option list file is nested.
Not supported option **<option>"'
Not supported options are specified.
Illegal output file "'<filename>"'
The output file specified is illegal. When '-P' option is used with "-ra’ or '-rb* option, the
output file name must conform to any file name specified with '-ra’ or -rb’ option.
Illegal numeric constant
Illegal numeric value is specified.
Ambiguous point in block definition
The address specified with '-ra’ option has ambiguous points. The source address overlap
the other section like have OVERLAY attribute, the specified with '-rb' option is valid.
Can't find section ""<section_name>"'
No section specified with '-rb' option.

112

Chapter 27 Object Converter Error Messages

116:

150:

151:

152:

153:

154:

155:

Can't find object in the area

No object within the range specified by '-ra' option.
Not an absolute object format

The input file is not an absolute object format file.
Bad object format

The object format of the input file is invalid.
Too large address

An address in the input file exceeds maximum limit for the specified format. Otherwise, the

address specified with '-ra’ or "-rb' option has negative value.
Load address overflow

An address exceeded maximum limit for the specified format.
Out of memory

The working memory area is insufficient.
Address overlap in *'<filename>""

Address specified in the output range overlaps.

27.2 Object Converter Errors

None.

27.3 Object Converter Warning Errors

500:

501:

515:

516:

Illegal character in Comment

A comment contains an invalid character.
Comment too long

A comment is too long.
lllegal parameter

An invalid parameter is specified.
Ignored option "'<option>"'

The option specification is ignored.

113

History

Issue

Date

Update

1st Edition

7 Jan, 2009

1st Edition

TLCS-900 Assembler Reference [1st Edition]

The Date of Issue: 7 Jan, 2009

TDE122-01

	TLCS-900 Assembler Reference

	INDEX

	Part 1 About this book
	Chapter 1 Explanation of this manual

	Part 2 The Assembler
	Chapter 2 The Assembler
	2.1 Input and Output Files

	Chapter 3 Assembly Language
	3.1 Basic Assembler Syntax
	3.1.1 Character Set
	3.1.2 Reserved Words
	3.1.3 Numerical Value
	3.1.4 Source Statements
	3.1.5 Comments
	3.1.6 Location Counter

	3.2 Identifier of Assembly Launguage
	3.2.1 Identifier
	3.2.2 Types of Identifier

	3.3 Expression of Assembly Language
	3.3.1 Expressions
	3.3.2 Operators

	3.4 Machine Instructions in Assembly Language
	3.4.1 Numeric Range

	3.5 Assembler Directives
	3.5.1 Defining Modules
	3.5.2 Defining Sections
	3.5.3 Directives for Inter-modular Identifier Referencing
	3.5.4 Data Area Definition Directives
	3.5.5 Equ Directives
	3.5.6 Align Directives
	3.5.7 Org Directives

	3.6 Control Instructions
	3.6.1 File Include Function
	3.6.2 $maximum Control Instruction

	Chapter 4 Assembler List File Format
	Chapter 5 Assembler Options
	Chapter 6 Assembler Limitation

	Part 3 The Linker
	Chapter 7 The Linker
	7.1 Input and Output Files

	Chapter 8 Link Command File
	8.1 Basic Link Command File
	8.1.1 Reserved Words
	8.1.2 Identifiers
	8.1.3 Expressions
	8.1.4 Location Counter
	8.1.5 Operators and Their Order of Precedence
	8.1.6 Functional Operators
	8.1.7 Assign Statements
	8.1.8 Comments

	8.2 Memory Definition Part
	8.2.1 Function of Memory Definition Part
	8.2.2 Memory Definition Part Format
	8.2.3 Predefined Memory

	8.3 Section Definition Part
	8.3.1 Function of Section Definition Part
	8.3.2 Section Definition Part Format
	8.3.3 Output Section Name Field
	8.3.4 Output Specification Field
	8.3.5 Attribute Field
	8.3.6 Input Section Specification Field
	8.3.7 Padding Field
	8.3.8 Output Memory Field

	8.4 Symbol Definition Part
	8.5 Incremental Linking
	8.5.1 Processing in Incremental Linking

	Chapter 9 Linker Map File Format
	Chapter 10 Linker Options
	Chapter 11 Linker Limitation

	Part 4 The Macro Preprocessor
	Chapter 12 The Macro Preprocessor
	12.1 Macro Preprocessor Overview
	12.2 Input and Output Files

	Chapter 13 Macro Preprocessor Grammar
	13.1 Character Set
	13.2 Character String
	13.3 Identifier
	13.4 Constants
	13.5 Expressions
	13.6 Trigger Character
	13.7 Comments
	13.8 Line Splice

	Chapter 14 Preprocess Functions
	Chapter 15 Macroprocess Functions
	15.1 Operators
	15.2 Conditional Macro
	15.3 Replacement Macro
	15.4 Numerical Macro
	15.5 String Control Macro
	15.6 Particular Macro

	Chapter 16 Macro Preprocessor Options
	Chapter 17 Macro Preprocessor Limitation

	Part 5 The Librarian
	Chapter 18 The Librarian
	18.1 Librarian Overview
	18.2 Startup command
	18.3 Input and Output Files

	Chapter 19 Librarian Options

	Part 6 The Object Converter
	Chapter 20 The Object Converter
	20.1 Object Converter Overview
	20.2 Startup command
	20.3 Input and Output Files

	Chapter 21 Object Converter Options

	Part 7 Error Message
	Chapter 22 Error Message Format
	22.1 Types of Error Message
	22.2 Error Message Format

	Chapter 23 Assembler Error Messages
	23.1 Assembler Fatal Errors
	23.2 Assembler Errors
	23.3 Assembler Warning Errors

	Chapter 24 Linker Error Messages
	24.1 Linker Fatal Errors
	24.2 Linker Errors
	24.3 Linker Warning Errors

	Chapter 25 Macro Preprocessor Error Messages
	25.1 Macro Preprocessor Fatal Errors
	25.2 Macro Preprocessor Errors
	25.3 Macro Preprocessor Warning Errors

	Chapter 26 Librarian Error Messages
	26.1 Librarian Fatal Errors
	26.2 Librarian Errors
	26.3 Librarian Warning Errors

	Chapter 27 Object Converter Error Messages
	27.1 Object Converter Fatal Errors
	27.2 Object Converter Errors
	27.3 Object Converter Warning Errors

	History

